Back to Search
Start Over
Printability of photo-sensitive nanocomposites using two-photon polymerization
- Source :
- Nanotechnology Reviews, Vol 9, Iss 1, Pp 418-426 (2020)
- Publication Year :
- 2020
- Publisher :
- Walter de Gruyter GmbH, 2020.
-
Abstract
- Two-photon polymerization direct laser writing (TPP DLW) is an emerging technology for producing advanced functional devices with complex three-dimensional (3D) micro-structures. Tremendous efforts have been devoted to developing two-photon polymerizable photo-sensitive nanocomposites with tailored properties. Light-induced reconfigurable smart materials such as liquid crystalline elastomers (LCEs) are promising materials. However, due to the difficulties in designing two-photon polymerizable liquid crystal monomer (LCM) nanocomposite photoresists, it is challenging to fabricate true 3D LCE micro-structures. In this paper, we report the preparation of photo-sensitive LCE nanocomposites containing photothermal nanomaterials, including multiwalled carbon nanotubes, graphene oxide and gold nanorods (AuNRs), for TPP DLW. The printability of the LCE nanocomposites is assessed by the fidelity of the micro-structures under different laser writing conditions. DLW of GO/LCM photoresist has shown a vigorous bubble formation. This may be due to the excessive heat generation upon rapid energy absorption of 780 nm laser energy. Compared to pure LCM photoresists, AuNR/LCM photoresists have a lower laser intensity threshold and higher critical laser scanning speed, due to the high absorption of AuNRs at 780 nm, which enhanced the photo-sensitivity of the photoresist. Therefore, a shorter printing time can be achieved for the AuNR/LCM photoresist.
- Subjects :
- Technology
Materials science
Physical and theoretical chemistry
QD450-801
Energy Engineering and Power Technology
Medicine (miscellaneous)
Nanotechnology
TP1-1185
Photoresist
photothermal nanomaterials
law.invention
Nanomaterials
Biomaterials
law
Nanocomposite
Graphene
Chemical technology
Process Chemistry and Technology
3d nanofabrication
Photothermal therapy
Laser
direct laser writing
Surfaces, Coatings and Films
two-photon polymerization
Heat generation
Nanorod
Biotechnology
Subjects
Details
- ISSN :
- 21919097
- Volume :
- 9
- Database :
- OpenAIRE
- Journal :
- Nanotechnology Reviews
- Accession number :
- edsair.doi.dedup.....86ae144656612d99209a618f69c2205d
- Full Text :
- https://doi.org/10.1515/ntrev-2020-0031