Back to Search Start Over

A centrosome-autonomous signal that involves centriole disengagement permits centrosome duplication in G2 phase after DNA damage

Authors :
Burcu Inanç
Ciaran G. Morrison
Helen Dodson
Source :
Molecular Biology of the Cell
Publication Year :
2010

Abstract

How centrosomes amplify after DNA damage is unclear. Cell fusions demonstrated that only irradiated centrosomes duplicate when fused with untreated partners, suggesting a licensing signal that does not move from one centrosome to another. Our data indicate that centriole disengagement occurs after irradiation, suggesting this as the signal.<br />DNA damage can induce centrosome overduplication in a manner that requires G2-to-M checkpoint function, suggesting that genotoxic stress can decouple the centrosome and chromosome cycles. How this happens is unclear. Using live-cell imaging of cells that express fluorescently tagged NEDD1/GCP-WD and proliferating cell nuclear antigen, we found that ionizing radiation (IR)-induced centrosome amplification can occur outside S phase. Analysis of synchronized populations showed that significantly more centrosome amplification occurred after irradiation of G2-enriched populations compared with G1-enriched or asynchronous cells, consistent with G2 phase centrosome amplification. Irradiated and control populations of G2 cells were then fused to test whether centrosome overduplication is allowed through a diffusible stimulatory signal, or the loss of a duplication-inhibiting signal. Irradiated G2/irradiated G2 cell fusions showed significantly higher centrosome amplification levels than irradiated G2/unirradiated G2 fusions. Chicken–human cell fusions demonstrated that centrosome amplification was limited to the irradiated partner. Our finding that only the irradiated centrosome can duplicate supports a model where a centrosome-autonomous inhibitory signal is lost upon irradiation of G2 cells. We observed centriole disengagement after irradiation. Although overexpression of dominant-negative securin did not affect IR-induced centrosome amplification, Plk1 inhibition reduced radiation-induced amplification. Together, our data support centriole disengagement as a licensing signal for DNA damage-induced centrosome amplification.

Details

ISSN :
19394586
Volume :
21
Issue :
22
Database :
OpenAIRE
Journal :
Molecular biology of the cell
Accession number :
edsair.doi.dedup.....86baa9406d0879da6bad1d0070d9f111