Back to Search Start Over

Peroxiredoxin II with dermal mesenchymal stem cells accelerates wound healing

Authors :
Nan-Nan Yu
Lin Feng
Ying-Ying Mao
Yue Liu
Mei-Hua Jin
Taeho Kwon
Aiguo Wang
Hu-Nan Sun
Ying-Hao Han
Ying-Hua Jin
Source :
Aging (Albany NY)
Publication Year :
2021

Abstract

Peroxiredoxin II (Prx II) is involved in proliferation, differentiation, and aging in various cell types. However, Prx II-mediated stem cell regulation is poorly understood. Here, dermal mesenchymal stem cells (DMSCs), cell-growth factor-rich conditioned medium from DMSCs (DMSC-CM), and DMSC-derived exosomes (DMSC-Exos) were used to explore the regulatory role of Prx II in DMSC wound healing. Following treatment, wound healing was significantly decelerated in Prx II-/- DMSCs than in Prx II+/+ DMSCs. In vitro stimulation with 10 μM H2O2 significantly increased apoptosis in Prx II-/- DMSCs compared with Prx II+/+ DMSCs. The mRNA expression levels of EGF, b-FGF, PDGF-B, and VEGF did not significantly differ between Prx II-/- and Prx II+/+ DMSCs. Fibroblasts proliferated comparably when treated with Prx II+/+ DMSC-CM or Prx II-/- DMSC-CM. Wound healing was significantly higher in the Prx II-/- DMSC-Exos-treated group than in the Prx II+/+ DMSCs-Exos-treated group. Moreover, microRNA (miR)-21-5p expression levels were lower and miR-221 levels were higher in Prx II-/- DMSCs than in Prx II+/+ DMSCs. Therefore, our results indicate that Prx II accelerated wound healing by protecting DMSCs from reactive oxygen species-induced apoptosis; however, Prx II did not regulate cell/growth factor secretion. Prx II potentially regulates exosome functions via miR-21-5p and miR-221.

Details

ISSN :
19454589
Volume :
13
Issue :
10
Database :
OpenAIRE
Journal :
Aging
Accession number :
edsair.doi.dedup.....86c5ba837c872c02fa182b5a93279980