Back to Search Start Over

$$L^{p}$$ Theory for the Interaction Between the Incompressible Navier–Stokes System and a Damped Plate

Authors :
Takéo Takahashi
Debayan Maity
Center for Applicable Mathematics [Bangalore] (TIFR-CAM)
Tata Institute for Fundamental Research (TIFR)
Systems with physical heterogeneities : inverse problems, numerical simulation, control and stabilization (SPHINX)
Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Mathematical Fluid Mechanics, Journal of Mathematical Fluid Mechanics, 2021, ⟨10.1007/s00021-021-00628-5⟩
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

International audience; We consider a viscous incompressible fluid governed by the Navier-Stokes system written in a domain where a part of the boundary is moving as a damped beam under the action of the fluid. We prove the existence and uniqueness of global strong solutions for the corresponding fluid-structure interaction system in an Lp-Lq setting. The main point in the proof consists in the study of a linear parabolic system coupling the non stationary Stokes system and a damped beam. We show that this linear system possesses the maximal regularity property by proving the R-sectoriality of the corresponding operator. The proof of the main results is then obtained by an appropriate change of variables to handle the free boundary and a fixed point argument to treat the nonlinearities of this system.

Details

ISSN :
14226952 and 14226928
Volume :
23
Database :
OpenAIRE
Journal :
Journal of Mathematical Fluid Mechanics
Accession number :
edsair.doi.dedup.....86ffceccc9c73aa30420d93fe4068736
Full Text :
https://doi.org/10.1007/s00021-021-00628-5