Back to Search Start Over

Anti-fibrogenic effect of PPAR-γ agonists in human intestinal myofibroblasts

Authors :
Younshin Jung
Jun Bon Koo
Kwang Jae Lee
Jun Hwan Yoo
Duk-Hwan Kim
Jong Woo Kim
Jongman Yoo
Ki Baik Hahm
Kee Myung Lee
Sung Jae Shin
Gwangil Kim
Sung Pyo Hong
Myeong-Ok Nam
Source :
BMC Gastroenterology, BMC Gastroenterology, Vol 17, Iss 1, Pp 1-12 (2017)
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

Background Intestinal fibrosis is a serious complication of inflammatory bowel disease, including Crohn’s disease and ulcerative colitis. There is no specific treatment for intestinal fibrosis. Studies have indicated that peroxisome proliferator-activated receptor- γ (PPAR-γ) agonists have anti-fibrogenic properties in organs besides the gut; however, their effects on human intestinal fibrosis are poorly understood. This study investigated the anti-fibrogenic properties and mechanisms of PPAR-γ agonists on human primary intestinal myofibroblasts (HIFs). Methods HIFs were isolated from normal colonic tissue of patients undergoing resection due to colorectal cancer. HIFs were treated with TGF-β1 and co-incubated with or without one of two synthetic PPAR-γ agonists, troglitazone or rosiglitazone. mRNA and protein expression of procollagen1A1, fibronectin, and α-smooth muscle actin were determined by semiquantitative reverse transcription-polymerase chain reaction and Western blot. LY294002 (Akt inhibitor) was used to examine whether Akt phosphorylation was a downstream mechanism of TGF-β1 induced expression of procollagen1A1, fibronectin, and α-smooth muscle actin in HIFs. The irreversible PPAR-γ antagonist GW9662 was used to investigate whether the effect of PPAR-γ agonists was PPAR-γ dependent. Results Both PPAR-γ agonists reduced the TGF-β1-induced expression of α-smooth muscle actin which was integrated into stress fibers in HIFs, as determined by actin microfilaments fluorescent staining and α-smooth muscle actin-specific immunocytochemistry. PPAR-γ agonists also inhibited TGF-β1-induced mRNA and protein expressions of procollagen1A1, fibronectin, and α-smooth muscle actin. TGF-β1 stimulation increased phosphorylation of downstream signaling molecules Smad2, Akt, and ERK. TGF-β1 induced synthesis of procollagen1A1, fibronectin, and α-smooth muscle actin through a phosphatidylinositol 3-kinase/Akt-dependent mechanism. PPAR-γ agonists down regulated fibrogenesis, as shown by inhibition of Akt and Smad2 phosphorylation. This anti-fibrogenic effect was PPAR-γ independent. Conclusions Troglitazone and rosiglitazone suppress TGF-β1-induced synthesis of procollagen1A1, fibronectin, and α-smooth muscle actin in HIFs and may be useful in treating intestinal fibrosis. Electronic supplementary material The online version of this article (doi:10.1186/s12876-017-0627-4) contains supplementary material, which is available to authorized users.

Details

ISSN :
1471230X
Volume :
17
Database :
OpenAIRE
Journal :
BMC Gastroenterology
Accession number :
edsair.doi.dedup.....870f487d4664c05648aee05a1085e7b0
Full Text :
https://doi.org/10.1186/s12876-017-0627-4