Back to Search Start Over

Adsorption of Oxygenates on Alkanethiol-Functionalized Pd(111) Surfaces: Mechanistic Insights into the Role of Self-Assembled Monolayers on Catalysis

Authors :
Stephen Marshall
J. William Medlin
Daniel K. Schwartz
Source :
Langmuir. 27:6731-6737
Publication Year :
2011
Publisher :
American Chemical Society (ACS), 2011.

Abstract

Recent work shows that coating a supported palladium catalyst with a self-assembled monolayer (SAM) of alkanethiols can dramatically improve selectivity in the hydrogenation of 1-epoxy-3-butene (EpB) to 1-epoxybutane. Here, we present the results of surface-level investigations of the adsorption of EpB and related molecules on SAM-coated Pd(111), with an aim of identifying mechanistic explanations for the observed catalytic behavior. Alkanethiol SAM-covered Pd(111) surfaces were prepared by conventional techniques and transferred to ultrahigh vacuum, where they were characterized using Auger electron spectroscopy (AES) and temperature-programmed desorption (TPD) of EpB and other probe molecules. Whereas previous studies have shown that EpB undergoes rapid decomposition via epoxide ring opening on uncoated Pd(111), TPD studies show that EpB does not undergo substantial ring opening on SAM-covered surfaces but rather desorbs intact at temperatures less than 300 K. Systematic comparisons of EpB desorption spectra to spectra for other C(4) oxygenates suggest that the SAM creates a kinetic barrier to epoxide ring-opening reactions that does not exist on the uncoated surface. The EpB desorption spectra as a function of exposure show behavior similar to the desorption of olefins from Pd(111), indicating that the binding of the olefin functionality, in contrast to that of the epoxide ring, is not significantly perturbed. EpB desorption spectra from surfaces with less well-ordered SAMs show the presence of weakly bound states not observed on well-ordered SAM surfaces. The lower activity observed on catalysts covered with less well-ordered SAMs is hypothesized to occur due to partial confinement of adsorbates into these weakly bound, less active states.

Details

ISSN :
15205827 and 07437463
Volume :
27
Database :
OpenAIRE
Journal :
Langmuir
Accession number :
edsair.doi.dedup.....8764f07b21c0888454d6e71c1beb33a9
Full Text :
https://doi.org/10.1021/la104921p