Back to Search Start Over

Unusual electromechanical response in rubrene single crystals

Authors :
Luca Muccioli
Guillaume Wantz
Yoann Olivier
Alejandro L. Briseno
Micaela Matta
Sai Manoj Gali
Damien Thuau
Isabelle Dufour
Cédric Ayela
Marco José Pereira
DIPARTIMENTO DI CHIMICA 'GIACOMO CIAMICIAN'
DIPARTIMENTO DI CHIMICA INDUSTRIALE 'TOSO MONTANARI'
Da definire
AREA MIN. 03 - Scienze chimiche
Matta, Micaela
Pereira, Marco José
Gali, Sai Manoj
Thuau, Damien
Olivier, Yoann
Briseno, Alejandro
Dufour, Isabelle
Ayela, Cedric
Wantz, Guillaume
Muccioli, Luca
Laboratoire de l'intégration, du matériau au système (IMS)
Université Sciences et Technologies - Bordeaux 1-Institut Polytechnique de Bordeaux-Centre National de la Recherche Scientifique (CNRS)
Lab Chem Novel Mat
Université de Mons (UMons)
Laboratoire de Chimie des Polymères Organiques (LCPO)
Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Ecole Nationale Supérieure de Chimie, de Biologie et de Physique (ENSCBP)-Université de Bordeaux (UB)-Institut de Chimie du CNRS (INC)
Source :
Materials Horizons, Materials Horizons, cRoyal Society of Chemistry, 2018, ⟨10.1039/C7MH00489C⟩
Publication Year :
2018
Publisher :
Royal Society of Chemistry (RSC), 2018.

Abstract

none 10 si Organic semiconductors are intensively studied as promising materials for the realisation of low-cost flexible electronic devices. The flexibility requirement implies either performance stability towards deformation, or conversely, detectable response to the deformation itself. The knowledge of the electromechanical response of organic semiconductors to external stresses is therefore not only interesting from a fundamental point of view, but also necessary for the development of real world applications. To this end, in this work we predict and measure the variation of charge carrier mobility in rubrene single crystals as a function of mechanical strain, applied selectively along the crystal axes. We find that strain induces simultaneous mobility changes along all three axes, and that in some cases the response is higher along directions orthogonal to the mechanical deformation. These variations cannot be explained by the modulation of intermolecular distances, but only by a more complex molecular reorganisation, which is particularly enhanced, in terms of response, by π-stacking and herringbone stacking. This microscopic knowledge of the relation between structural and mobility variations is essential for the interpretation of electromechanical measurements for crystalline organic semiconductors, and for the rational design of electronic devices. mixed Matta, Micaela; Pereira, Marco José; Gali, Sai Manoj; Thuau, Damien; Olivier, Yoann; Briseno, Alejandro; Dufour, Isabelle; Ayela, Cedric; Wantz, Guillaume; Muccioli, Luca Matta, Micaela; Pereira, Marco José; Gali, Sai Manoj; Thuau, Damien; Olivier, Yoann; Briseno, Alejandro; Dufour, Isabelle; Ayela, Cedric; Wantz, Guillaume; Muccioli, Luca

Details

ISSN :
20516355 and 20516347
Volume :
5
Database :
OpenAIRE
Journal :
Materials Horizons
Accession number :
edsair.doi.dedup.....8765ef456664bd10c018079626e76aa7
Full Text :
https://doi.org/10.1039/c7mh00489c