Back to Search Start Over

Optimally Imprecise Memory and Biased Forecasts

Authors :
Rava Azeredo da Silveira
Michael Woodford
Yeji Sung
Biophysique et Neuroscience Théoriques
Laboratoire de physique de l'ENS - ENS Paris (LPENS)
Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-Sorbonne Université (SU)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)
University of Basel (Unibas)
Columbia University [New York]
Laboratoire de physique de l'ENS - ENS Paris (LPENS (UMR_8023))
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Azeredo da Silveira, Rava
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We propose a model of optimal decision making subject to a memory constraint. The constraint is a limit on the complexity of memory measured using Shannon's mutual information, as in models of rational inattention; but our theory differs from that of Sims (2003) in not assuming costless memory of past cognitive states. We show that the model implies that both forecasts and actions will exhibit idiosyncratic random variation; that average beliefs will also differ from rational-expectations beliefs, with a bias that fluctuates forever with a variance that does not fall to zero even in the long run; and that more recent news will be given disproportionate weight in forecasts. We solve the model under a variety of assumptions about the degree of persistence of the variable to be forecasted and the horizon over which it must be forecasted, and examine how the nature of forecast biases depends on these parameters. The model provides a simple explanation for a number of features of reported expectations in laboratory and field settings, notably the evidence of over-reaction in elicited forecasts documented by Afrouzi et al. (2020) and Bordalo et al. (2020a).

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....87dfa1559a31d0ab43be95eb5ed23ee2