Back to Search Start Over

The DCA: SOMe comparison

Authors :
Jan Feyereisl
Uwe Aickelin
Julie Greensmith
Source :
Evolutionary Intelligence. 1:85-112
Publication Year :
2008
Publisher :
Springer Science and Business Media LLC, 2008.

Abstract

The Dendritic Cell Algorithm (DCA) is an immune-inspired algorithm, developed for the purpose of anomaly detection. The algorithm performs multi-sensor data fusion and correlation which results in a 'context aware' detection system. Previous applications of the DCA have included the detection of potentially malicious port scanning activity, where it has produced high rates of true positives and low rates of false positives. In this work we aim to compare the performance of the DCA and of a Self-Organizing Map (SOM) when applied to the detection of SYN port scans, through experimental analysis. A SOM is an ideal candidate for comparison as it shares similarities with the DCA in terms of the data fusion method employed. It is shown that the results of the two systems are comparable, and both produce false positives for the same processes. This shows that the DCA can produce anomaly detection results to the same standard as an established technique.<br />38 pages, 29 figures, 10 tables, Evolutionary Intelligence

Details

ISSN :
18645917 and 18645909
Volume :
1
Database :
OpenAIRE
Journal :
Evolutionary Intelligence
Accession number :
edsair.doi.dedup.....87f9bfcc738a637fdc4c376f886d52e6
Full Text :
https://doi.org/10.1007/s12065-008-0008-6