Back to Search
Start Over
Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more
- Source :
- Nanophotonics, Vol 9, Iss 12, Pp 3699-3731 (2020)
- Publication Year :
- 2020
- Publisher :
- De Gruyter, 2020.
-
Abstract
- The unusual electromagnetic responses of nanostructured metasurfaces endow them with an ability to manipulate the four fundamental properties (amplitude, phase, polarization, and frequency) of lightwave at the subwavelength scale. Based on this, in the past several years, a lot of innovative optical elements and devices, such as metagratings, metalens, metaholograms, printings, vortex beam generators, or even their combinations, have been proposed, which have greatly empowered the advanced research and applications of metasurfaces in many fields. Behind these achievements are scientists’ continuous exploration of new physics and degrees of freedom in nanostructured metasurface design. This review will focus on the progress on the design of different nanostructured metasurfaces for lightwave manipulation, including by varying/fixing the dimensions and/or orientations of isotropic/anisotropic nanostructures, which can therefore provide various functionalities for different applications. Exploiting the design degrees of freedom of optical metasurfaces provides great flexibility in the design of multifunctional and multiplexing devices, which can be applied in anticounterfeiting, information encoding and hiding, high-density optical storage, multichannel imaging and displays, sensing, optical communications, and many other related fields.
- Subjects :
- Physics
optical metasurface
QC1-999
Degrees of freedom
Holography
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
Atomic and Molecular Physics, and Optics
metalens
Electronic, Optical and Magnetic Materials
law.invention
010309 optics
Classical mechanics
geometric phase
Geometric phase
law
degrees of freedom
multifunctional device
0103 physical sciences
holography
Electrical and Electronic Engineering
0210 nano-technology
Biotechnology
Subjects
Details
- Language :
- English
- ISSN :
- 21928614 and 21928606
- Volume :
- 9
- Issue :
- 12
- Database :
- OpenAIRE
- Journal :
- Nanophotonics
- Accession number :
- edsair.doi.dedup.....880494d34a6dd53c4ddb031340d5ba5d