Back to Search Start Over

2D whole-building hygrothermal simulation analysis based on a PGD reduced order model

Authors :
Monika Woloszyn
Nathan Mendes
Sihem Guernouti
Walter Mazuroski
Julien Berger
Laboratoire Optimisation de la Conception et Ingénierie de l'Environnement (LOCIE)
Université Savoie Mont Blanc (USMB [Université de Savoie] [Université de Chambéry])-Centre National de la Recherche Scientifique (CNRS)
Pontifical Catholic University of Paraná (PUCPR)
Pontifical Catholic University of Paraná
Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement - Equipe-projet BPE (Cerema Equipe-projet BPE)
Centre d'Etudes et d'Expertise sur les Risques, l'Environnement, la Mobilité et l'Aménagement (Cerema)
Centre de Thermique de Lyon (CETHIL)
Université Claude Bernard Lyon 1 (UCBL)
Université de Lyon-Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon)
Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Energy and Buildings, Energy and Buildings, Elsevier, 2016, 112, pp.49-61. ⟨10.1016/j.enbuild.2015.11.023⟩
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Innovative and efficient ways to carry out numerical simulations are worth of investigation to reduce the computational complexity of building models and make it possible to solve complex problems. This paper presents a reduced order model, based on Proper Generalised Decomposition (PGD), to assess 2-dimensional heat and moisture transfer in walls. This model is associated with the multizone model Domus using an indirect coupling method. Both models are co-simulated to perform whole-building hygrothermal simulation, considering 2D transfer in walls. The whole-building model is first validated with data from the IEA Annex 41. Then, a case study is considered taking into account a 2-zones building with an intermediary shared wall modelled in 2 dimensions to illustrate the importance of the technique to analyse the hygrothermal behaviour of the wall. It has been highlighted that the whole model enables to perform more precisely analyses such as mould growth on the internal surface. In addition, important theoretical numerical savings (90%) are observed when compared to the large original model. However, the effective numerical savings are not so important (40%) due to the limitations of the co-simulation method.

Details

ISSN :
03787788
Volume :
112
Database :
OpenAIRE
Journal :
Energy and Buildings
Accession number :
edsair.doi.dedup.....88472ddcfe562806bf62348d673a77b2