Back to Search Start Over

Narrow-band surveys for very high redshift Lyman-alpha emitters

Authors :
Cedric G. Lacey
Kim K. Nilsson
Alvaro Orsi
Carlton M. Baugh
E. Thommes
Publication Year :
2007

Abstract

Context: Many current and future surveys aim to detect the highest redshift (z >~ 7) sources through their Lyman-alpha (Ly-alpha) emission, using the narrow-band imaging method. However, to date the surveys have only yielded non-detections and upper limits as no survey has reached the necessary combination of depth and area to detect these very young star forming galaxies. Aims: We aim to calculate model luminosity functions and mock surveys of Ly-alpha emitters at z >~ 7 based on a variety of approaches. Methods: We calculate model luminosity functions at different redshifts based on three different approaches: a semi-analytical model based on CDM, a simple phenomenological model, and an extrapolation of observed Schechter functions at lower redshifts. The results of the first two models are compared with observations made at redshifts z ~ 5.7 and z ~ 6.5, and they are then extrapolated to higher redshift. Results: We present model luminosity functions for redshifts between z = 7 - 12.5 and give specific number predictions for future planned or possible narrow-band surveys for Ly-alpha emitters. We also investigate what constraints future observations will be able to place on the Ly-alpha luminosity function at very high redshift. Conclusion: It should be possible to observe z = 7 - 10 Ly-alpha emitters with present or near-future instruments if enough observing time is allocated. In particular, large area surveys such as ELVIS (Emission Line galaxies with VISTA Survey) will be useful in collecting a large sample. However, to get a large enough sample to constrain well the z >= 10 Ly-alpha luminosity function, instruments further in the future, such as an ELT, will be necessary.<br />8 pages, 4 figures, 3 tables, Accepted in A&A, best printed in colour

Details

Language :
English
Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....88b1fb8594eb14638f298918d62934a2