Back to Search
Start Over
Identification of stable heat tolerance QTLs using inter-specific recombinant inbred line population derived from GPF 2 and ILWC 292
- Source :
- PLoS ONE, Vol 16, Iss 8, p e0254957 (2021), PLoS ONE, PLoS ONE, Vol 16, Iss 8 (2021)
- Publication Year :
- 2021
- Publisher :
- Public Library of Science (PLoS), 2021.
-
Abstract
- Heat stress during reproductive stages has been leading to significant yield losses in chickpea (Cicer arietinum L.). With an aim of identifying the genomic regions or QTLs responsible for heat tolerance, 187 F8 recombinant inbred lines (RILs) derived from the cross GPF 2 (heat tolerant) × ILWC 292 (heat sensitive) were evaluated under late-sown irrigated (January-May) and timely-sown irrigated environments (November-April) at Ludhiana and Faridkot in Punjab, India for 13 heat tolerance related traits. The pooled ANOVA for both locations for the traits namely days to germination (DG), days to flowering initiation (DFI), days to 50% flowering (DFF), days to 100% flowering (DHF), plant height (PH), pods per plant (NPP), biomass (BIO), grain yield (YLD), 100-seed weight (HSW), harvest index (HI), membrane permeability index (MPI), relative leaf water content (RLWC) and pollen viability (PV)) showed a highly significant difference in RILs. The phenotyping data coupled with the genetic map comprising of 1365 ddRAD-Seq based SNP markers were used for identifying the QTLs for heat tolerance. Composite interval mapping provided a total of 28 and 23 QTLs, respectively at Ludhiana and Faridkot locations. Of these, 13 consensus QTLs for DG, DFI, DFF, DHF, PH, YLD, and MPI have been identified at both locations. Four QTL clusters containing QTLs for multiple traits were identified on the same genomic region at both locations. Stable QTLs for days to flowering can be one of the major factors for providing heat tolerance as early flowering has an advantage of more seed setting due to a comparatively longer reproductive period. Identified QTLs can be used in genomics-assisted breeding to develop heat stress-tolerant high yielding chickpea cultivars.
- Subjects :
- Plant Science
medicine.disease_cause
Inbred strain
Odds Ratio
Inbreeding
Cultivar
Flowering Plants
Recombination, Genetic
education.field_of_study
Multidisciplinary
Physics
Plant Anatomy
Reproduction
Temperature
Classical Mechanics
Eukaryota
food and beverages
Genomics
Plants
Heat tolerance
Phenotypes
Horticulture
Phenotype
Germination
Physical Sciences
Seeds
Mechanical Stress
Pollen
Medicine
Research Article
Thermotolerance
Membrane permeability
Science
Quantitative Trait Loci
Population
India
Biology
Quantitative trait locus
Research and Analysis Methods
Genetics
medicine
Molecular Biology Techniques
education
Molecular Biology
Gene Mapping
fungi
Organisms
Biology and Life Sciences
Cicer
Plant Breeding
Thermal Stresses
Genetic Loci
Heat-Shock Response
Subjects
Details
- ISSN :
- 19326203
- Volume :
- 16
- Database :
- OpenAIRE
- Journal :
- PLOS ONE
- Accession number :
- edsair.doi.dedup.....893fb6a1e0fe87a7bf604e4e14fb42fc
- Full Text :
- https://doi.org/10.1371/journal.pone.0254957