Back to Search Start Over

BAP1 haploinsufficiency predicts a distinct immunogenic class of malignant peritoneal mesothelioma

Authors :
Estelle Li
Hans Adomat
Robert Shukin
Stanislav Volik
Robert H. Bell
Hui Xue
Gregg B. Morin
Joshua Zhou
Shawn Anderson
Yarrow J. McConnell
Xin Dong
Ladan Fazli
Brian McConeghy
Colin Collins
Faraz Hach
Dong Lin
Fan Mo
Martin E. Gleave
Yuzhuo Wang
Raunak Shrestha
Andrew Churg
Sonal Brahmbhatt
Andrea McCart
Mads Daugaard
Noushin Nabavi
Yen-Yi Lin
Andrew M. Lowy
Antonio Hurtado-Coll
Htoo Zarni Oo
Tianhui Chen
Stephane Le Bihan
S. Cenk Sahinalp
Anne Haegert
Source :
Genome Medicine, Genome Medicine, Vol 11, Iss 1, Pp 1-12 (2019)
Publication Year :
2019
Publisher :
BioMed Central, 2019.

Abstract

Background Malignant peritoneal mesothelioma (PeM) is a rare and fatal cancer that originates from the peritoneal lining of the abdomen. Standard treatment of PeM is limited to cytoreductive surgery and/or chemotherapy, and no effective targeted therapies for PeM exist. Some immune checkpoint inhibitor studies of mesothelioma have found positivity to be associated with a worse prognosis. Methods To search for novel therapeutic targets for PeM, we performed a comprehensive integrative multi-omics analysis of the genome, transcriptome, and proteome of 19 treatment-naïve PeM, and in particular, we examined BAP1 mutation and copy number status and its relationship to immune checkpoint inhibitor activation. Results We found that PeM could be divided into tumors with an inflammatory tumor microenvironment and those without and that this distinction correlated with haploinsufficiency of BAP1. To further investigate the role of BAP1, we used our recently developed cancer driver gene prioritization algorithm, HIT’nDRIVE, and observed that PeM with BAP1 haploinsufficiency form a distinct molecular subtype characterized by distinct gene expression patterns of chromatin remodeling, DNA repair pathways, and immune checkpoint receptor activation. We demonstrate that this subtype is correlated with an inflammatory tumor microenvironment and thus is a candidate for immune checkpoint blockade therapies. Conclusions Our findings reveal BAP1 to be a potential, easily trackable prognostic and predictive biomarker for PeM immunotherapy that refines PeM disease classification. BAP1 stratification may improve drug response rates in ongoing phases I and II clinical trials exploring the use of immune checkpoint blockade therapies in PeM in which BAP1 status is not considered. This integrated molecular characterization provides a comprehensive foundation for improved management of a subset of PeM patients. Electronic supplementary material The online version of this article (10.1186/s13073-019-0620-3) contains supplementary material, which is available to authorized users.

Details

Language :
English
ISSN :
1756994X
Volume :
11
Database :
OpenAIRE
Journal :
Genome Medicine
Accession number :
edsair.doi.dedup.....89dcda95d56fe7b52bef3ac27476c04e