Back to Search
Start Over
Alteration of proteins and pigments influence the function of photosystem I under iron deficiency from Chlamydomonas reinhardtii
- Source :
- PLoS ONE, Vol 7, Iss 4, p e35084 (2012), PLoS ONE
- Publication Year :
- 2012
- Publisher :
- Public Library of Science (PLoS), 2012.
-
Abstract
- BACKGROUND: Iron is an essential micronutrient for all organisms because it is a component of enzyme cofactors that catalyze redox reactions in fundamental metabolic processes. Even though iron is abundant on earth, it is often present in the insoluble ferric [Fe (III)] state, leaving many surface environments Fe-limited. The haploid green alga Chlamydomonas reinhardtii is used as a model organism for studying eukaryotic photosynthesis. This study explores structural and functional changes in PSI-LHCI supercomplexes under Fe deficiency as the eukaryotic photosynthetic apparatus adapts to Fe deficiency. RESULTS: 77K emission spectra and sucrose density gradient data show that PSI and LHCI subunits are affected under iron deficiency conditions. The visible circular dichroism (CD) spectra associated with strongly-coupled chlorophyll dimers increases in intensity. The change in CD signals of pigments originates from the modification of interactions between pigment molecules. Evidence from sucrose gradients and non-denaturing (green) gels indicates that PSI-LHCI levels were reduced after cells were grown for 72 h in Fe-deficient medium. Ultrafast fluorescence spectroscopy suggests that red-shifted pigments in the PSI-LHCI antenna were lost during Fe stress. Further, denaturing gel electrophoresis and immunoblot analysis reveals that levels of the PSI subunits PsaC and PsaD decreased, while PsaE was completely absent after Fe stress. The light harvesting complexes were also susceptible to iron deficiency, with Lhca1 and Lhca9 showing the most dramatic decreases. These changes in the number and composition of PSI-LHCI supercomplexes may be caused by reactive oxygen species, which increase under Fe deficiency conditions. CONCLUSIONS: Fe deficiency induces rapid reduction of the levels of photosynthetic pigments due to a decrease in chlorophyll synthesis. Chlorophyll is important not only as a light-harvesting pigment, but also has a structural role, particularly in the pigment-rich LHCI subunits. The reduced level of chlorophyll molecules inhibits the formation of large PSI-LHCI supercomplexes, further decreasing the photosynthetic efficiency.
- Subjects :
- 0106 biological sciences
Cyanobacteria
Chlamydomonas reinhardtii
lcsh:Medicine
Plant Science
Biochemistry
01 natural sciences
Energy-Producing Processes
chemistry.chemical_compound
Photosynthesis
lcsh:Science
Plant Proteins
Chlamydomonas Reinhardtii
0303 health sciences
Multidisciplinary
Ecology
biology
Plant Biochemistry
Chemistry
Iron Deficiencies
Plants
Cytochemistry
Research Article
medicine.drug
Algae
Iron
Biophysics
Bioenergetics
Photosystem I
Protein Chemistry
Redox
03 medical and health sciences
Model Organisms
Plant and Algal Models
Plant-Environment Interactions
Botany
medicine
Iron deficiency (plant disorder)
Biology
030304 developmental biology
Photosystem I Protein Complex
Plant Ecology
lcsh:R
biology.organism_classification
Chlorophyll
Ferric
lcsh:Q
010606 plant biology & botany
Subjects
Details
- Language :
- English
- ISSN :
- 19326203
- Volume :
- 7
- Issue :
- 4
- Database :
- OpenAIRE
- Journal :
- PLoS ONE
- Accession number :
- edsair.doi.dedup.....8a07676ba1746b1cdb2f33e60431c227