Back to Search
Start Over
The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression : An Individual Participant Data Meta-Analysis
- Source :
- Psychotherapy and Psychosomatics, 89(1), 25. S. Karger AG, He, C, Levis, B, Riehm, K, Saadat, N, Levis, A, Azar, M, Rice, D, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J A, Kloda, L, Mcmillan, D, Patten, S, Shrier, I, Ziegelstein, R, Akena, D, Arroll, B, Ayalon, L, Baradaran, H, Baron, M, Beraldi, A, Bombardier, C, Butterworth, P, Carter, G, Chagas, M, Chan, J N, Cholera, R, Clover, K, Conwell, Y, De man-van ginkel, J, Fann, J, Fischer, F, Fung, D, Gelaye, B, Goodyear-smith, F, Greeno, C, Hall, B, Harrison, P, Härter, M, Hegerl, U, Hides, L, Hobfoll, S, Hudson, M, Hyphantis, T, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M, Kiely, K, Kwan, Y, Lamers, F, Liu, S, Lotrakul, M, Loureiro, S, Löwe, B, Marsh, L, Mcguire, A, Mohd-sidik, S, Munhoz, T, Muramatsu, K, Osório, F, Patel, V, Pence, B, Persoons, P, Picardi, A, Reuter, K, Rooney, A, Da silva dos santos, I, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P, Turner, A, Van weert, H P M, White, J, Whooley, M, Winkley, K, Yamada, M, Thombs, B & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression: An Individual Participant Data Meta-Analysis ', Psychotherapy and psychosomatics, vol. 89, no. 1, pp. 1-13 . https://doi.org/10.1159/000502294, He, C, Levis, B, Riehm, K E, Saadat, N, Levis, A W, Azar, M, Rice, D B, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J P A, Kloda, L A, McMillan, D, Patten, S B, Shrier, I, Ziegelstein, R C, Akena, D H, Arroll, B, Ayalon, L, Baradaran, H R, Baron, M, Beraldi, A, Bombardier, C H, Butterworth, P, Carter, G, Chagas, M H N, Chan, J C N, Cholera, R, Clover, K, Conwell, Y, De Man-Van Ginkel, J M, Fann, J R, Fischer, F H, Fung, D, Gelaye, B, Goodyear-Smith, F, Greeno, C G, Hall, B J, Harrison, P A, Härter, M, Hegerl, U, Hides, L, Hobfoll, S E, Hudson, M, Hyphantis, T N, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M E, Kiely, K M, Kwan, Y, Lamers, F, Liu, S I, Lotrakul, M, Loureiro, S R, Löwe, B, Marsh, L, McGuire, A, Mohd-Sidik, S, Munhoz, T N, Muramatsu, K, Osório, F L, Patel, V, Pence, B W, Persoons, P, Picardi, A, Reuter, K, Rooney, A G, Da Silva Dos Santos, I S, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P L L, Turner, A, Van Weert, H C P M, White, J, Whooley, M A, Winkley, K, Yamada, M, Thombs, B D & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression : An Individual Participant Data Meta-Analysis ', Psychotherapy and Psychosomatics, vol. 89, no. 1, pp. 25-37 . https://doi.org/10.1159/000502294, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Psychother Psychosom, Psychotherapy and Psychosomatics, 89(1), 25-37. S. Karger AG, Psychotherapy and psychosomatics, 89(1), 25-37. S. Karger AG
- Publication Year :
- 2020
-
Abstract
- Background: Screening for major depression with the Patient Health Questionnaire-9 (PHQ-9) can be done using a cutoff or the PHQ-9 diagnostic algorithm. Many primary studies publish results for only one approach, and previous meta-analyses of the algorithm approach included only a subset of primary studies that collected data and could have published results. Objective: To use an individual participant data meta-analysis to evaluate the accuracy of two PHQ-9 diagnostic algorithms for detecting major depression and compare accuracy between the algorithms and the standard PHQ-9 cutoff score of ≥10. Methods: Medline, Medline In-Process and Other Non-Indexed Citations, PsycINFO, Web of Science (January 1, 2000, to February 7, 2015). Eligible studies that classified current major depression status using a validated diagnostic interview. Results: Data were included for 54 of 72 identified eligible studies (n participants = 16,688, n cases = 2,091). Among studies that used a semi-structured interview, pooled sensitivity and specificity (95% confidence interval) were 0.57 (0.49, 0.64) and 0.95 (0.94, 0.97) for the original algorithm and 0.61 (0.54, 0.68) and 0.95 (0.93, 0.96) for a modified algorithm. Algorithm sensitivity was 0.22–0.24 lower compared to fully structured interviews and 0.06–0.07 lower compared to the Mini International Neuropsychiatric Interview. Specificity was similar across reference standards. For PHQ-9 cutoff of ≥10 compared to semi-structured interviews, sensitivity and specificity (95% confidence interval) were 0.88 (0.82–0.92) and 0.86 (0.82–0.88). Conclusions: The cutoff score approach appears to be a better option than a PHQ-9 algorithm for detecting major depression.
- Subjects :
- MEDLINE
Patient Health Questionnaire
Patient Health Questionnaire-9
Sensitivity and Specificity
Diagnostic accuracy
Article
03 medical and health sciences
Questionnaire-9
0302 clinical medicine
Journal Article
Medicine
Cutoff
Humans
Mass Screening
030212 general & internal medicine
Applied Psychology
Mass screening
TRIAGEM
Mini-international neuropsychiatric interview
Psychiatric Status Rating Scales
Depressive Disorder, Major
Patient
business.industry
Depression
General Medicine
Confidence interval
030227 psychiatry
Data Accuracy
Psychiatry and Mental health
Clinical Psychology
Meta-analysis
Health
Structured interview
Screening
business
Algorithm
Algorithms
Subjects
Details
- Language :
- English
- ISSN :
- 00333190
- Database :
- OpenAIRE
- Journal :
- Psychotherapy and Psychosomatics, 89(1), 25. S. Karger AG, He, C, Levis, B, Riehm, K, Saadat, N, Levis, A, Azar, M, Rice, D, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J A, Kloda, L, Mcmillan, D, Patten, S, Shrier, I, Ziegelstein, R, Akena, D, Arroll, B, Ayalon, L, Baradaran, H, Baron, M, Beraldi, A, Bombardier, C, Butterworth, P, Carter, G, Chagas, M, Chan, J N, Cholera, R, Clover, K, Conwell, Y, De man-van ginkel, J, Fann, J, Fischer, F, Fung, D, Gelaye, B, Goodyear-smith, F, Greeno, C, Hall, B, Harrison, P, Härter, M, Hegerl, U, Hides, L, Hobfoll, S, Hudson, M, Hyphantis, T, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M, Kiely, K, Kwan, Y, Lamers, F, Liu, S, Lotrakul, M, Loureiro, S, Löwe, B, Marsh, L, Mcguire, A, Mohd-sidik, S, Munhoz, T, Muramatsu, K, Osório, F, Patel, V, Pence, B, Persoons, P, Picardi, A, Reuter, K, Rooney, A, Da silva dos santos, I, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P, Turner, A, Van weert, H P M, White, J, Whooley, M, Winkley, K, Yamada, M, Thombs, B & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression: An Individual Participant Data Meta-Analysis ', Psychotherapy and psychosomatics, vol. 89, no. 1, pp. 1-13 . https://doi.org/10.1159/000502294, He, C, Levis, B, Riehm, K E, Saadat, N, Levis, A W, Azar, M, Rice, D B, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J P A, Kloda, L A, McMillan, D, Patten, S B, Shrier, I, Ziegelstein, R C, Akena, D H, Arroll, B, Ayalon, L, Baradaran, H R, Baron, M, Beraldi, A, Bombardier, C H, Butterworth, P, Carter, G, Chagas, M H N, Chan, J C N, Cholera, R, Clover, K, Conwell, Y, De Man-Van Ginkel, J M, Fann, J R, Fischer, F H, Fung, D, Gelaye, B, Goodyear-Smith, F, Greeno, C G, Hall, B J, Harrison, P A, Härter, M, Hegerl, U, Hides, L, Hobfoll, S E, Hudson, M, Hyphantis, T N, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M E, Kiely, K M, Kwan, Y, Lamers, F, Liu, S I, Lotrakul, M, Loureiro, S R, Löwe, B, Marsh, L, McGuire, A, Mohd-Sidik, S, Munhoz, T N, Muramatsu, K, Osório, F L, Patel, V, Pence, B W, Persoons, P, Picardi, A, Reuter, K, Rooney, A G, Da Silva Dos Santos, I S, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P L L, Turner, A, Van Weert, H C P M, White, J, Whooley, M A, Winkley, K, Yamada, M, Thombs, B D & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression : An Individual Participant Data Meta-Analysis ', Psychotherapy and Psychosomatics, vol. 89, no. 1, pp. 25-37 . https://doi.org/10.1159/000502294, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Psychother Psychosom, Psychotherapy and Psychosomatics, 89(1), 25-37. S. Karger AG, Psychotherapy and psychosomatics, 89(1), 25-37. S. Karger AG
- Accession number :
- edsair.doi.dedup.....8a1f93c28a7b6d89f048b56f72d7d851
- Full Text :
- https://doi.org/10.1159/000502294