Back to Search Start Over

The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression : An Individual Participant Data Meta-Analysis

Authors :
Scott B. Patten
Kira E. Riehm
Philippe Persoons
Patricia A. Harrison
Mary A. Whooley
Kirsty Winkley
Ulrich Hegerl
Sherina Mohd-Sidik
Marcos Hortes Nisihara Chagas
Anna Beraldi
Adam Simning
Leanne Hides
Pim Cuijpers
Kumiko Muramatsu
Brooke Levis
Manote Lotrakul
Juwita Shaaban
Ian Shrier
Jill Boruff
Dickens Akena
Rushina Cholera
Lorie A. Kloda
John P. A. Ioannidis
Tiago N. Munhoz
Janneke M. de Man-van Ginkel
Mohammad E. Khamseh
Masatoshi Inagaki
Bernd Löwe
Catherine G. Greeno
Nazanin Saadat
Sonia R Loureiro
Chen He
Daniel Fung
Roy C. Ziegelstein
Ankur Krishnan
Kim M. Kiely
Alexander W. Levis
Martin Härter
Hamid Reza Baradaran
Jesse R. Fann
Anthony McGuire
Liat Ayalon
Yin Wu
Mahrukh Imran
Thomas Hyphantis
Laura Marsh
Marleine Azar
Bizu Gelaye
Simon Gilbody
Khalida Ismail
Marie Hudson
Gregory Carter
Peter Butterworth
Iná S. Santos
Charles H. Bombardier
Yunxin Kwan
Juliana C.N. Chan
Jennifer White
Mitsuhiko Yamada
Kerrie Clover
Andrea Benedetti
Henk van Weert
Murray Baron
Brian J. Hall
Dean McMillan
Felicity Goodyear-Smith
Yeates Conwell
Bruce Arroll
Ying Sun
Sharon C. Sung
Alyna Turner
Katrin Reuter
Stevan E. Hobfoll
Brett D. Thombs
Nathalie Jette
Pei Lin Lynnette Tan
Brian W. Pence
Abbey C. Sidebottom
Shen Ing Liu
Danielle B. Rice
Flávia de Lima Osório
Felix Fischer
Femke Lamers
Angelo Picardi
Lesley Stafford
Alasdair G Rooney
Vikram Patel
APH - Mental Health
Amsterdam Neuroscience - Mood, Anxiety, Psychosis, Stress & Sleep
Psychiatry
APH - Digital Health
General practice
ACS - Heart failure & arrhythmias
APH - Personalized Medicine
APH - Quality of Care
Source :
Psychotherapy and Psychosomatics, 89(1), 25. S. Karger AG, He, C, Levis, B, Riehm, K, Saadat, N, Levis, A, Azar, M, Rice, D, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J A, Kloda, L, Mcmillan, D, Patten, S, Shrier, I, Ziegelstein, R, Akena, D, Arroll, B, Ayalon, L, Baradaran, H, Baron, M, Beraldi, A, Bombardier, C, Butterworth, P, Carter, G, Chagas, M, Chan, J N, Cholera, R, Clover, K, Conwell, Y, De man-van ginkel, J, Fann, J, Fischer, F, Fung, D, Gelaye, B, Goodyear-smith, F, Greeno, C, Hall, B, Harrison, P, Härter, M, Hegerl, U, Hides, L, Hobfoll, S, Hudson, M, Hyphantis, T, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M, Kiely, K, Kwan, Y, Lamers, F, Liu, S, Lotrakul, M, Loureiro, S, Löwe, B, Marsh, L, Mcguire, A, Mohd-sidik, S, Munhoz, T, Muramatsu, K, Osório, F, Patel, V, Pence, B, Persoons, P, Picardi, A, Reuter, K, Rooney, A, Da silva dos santos, I, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P, Turner, A, Van weert, H P M, White, J, Whooley, M, Winkley, K, Yamada, M, Thombs, B & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression: An Individual Participant Data Meta-Analysis ', Psychotherapy and psychosomatics, vol. 89, no. 1, pp. 1-13 . https://doi.org/10.1159/000502294, He, C, Levis, B, Riehm, K E, Saadat, N, Levis, A W, Azar, M, Rice, D B, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J P A, Kloda, L A, McMillan, D, Patten, S B, Shrier, I, Ziegelstein, R C, Akena, D H, Arroll, B, Ayalon, L, Baradaran, H R, Baron, M, Beraldi, A, Bombardier, C H, Butterworth, P, Carter, G, Chagas, M H N, Chan, J C N, Cholera, R, Clover, K, Conwell, Y, De Man-Van Ginkel, J M, Fann, J R, Fischer, F H, Fung, D, Gelaye, B, Goodyear-Smith, F, Greeno, C G, Hall, B J, Harrison, P A, Härter, M, Hegerl, U, Hides, L, Hobfoll, S E, Hudson, M, Hyphantis, T N, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M E, Kiely, K M, Kwan, Y, Lamers, F, Liu, S I, Lotrakul, M, Loureiro, S R, Löwe, B, Marsh, L, McGuire, A, Mohd-Sidik, S, Munhoz, T N, Muramatsu, K, Osório, F L, Patel, V, Pence, B W, Persoons, P, Picardi, A, Reuter, K, Rooney, A G, Da Silva Dos Santos, I S, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P L L, Turner, A, Van Weert, H C P M, White, J, Whooley, M A, Winkley, K, Yamada, M, Thombs, B D & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression : An Individual Participant Data Meta-Analysis ', Psychotherapy and Psychosomatics, vol. 89, no. 1, pp. 25-37 . https://doi.org/10.1159/000502294, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Psychother Psychosom, Psychotherapy and Psychosomatics, 89(1), 25-37. S. Karger AG, Psychotherapy and psychosomatics, 89(1), 25-37. S. Karger AG
Publication Year :
2020

Abstract

Background: Screening for major depression with the Patient Health Questionnaire-9 (PHQ-9) can be done using a cutoff or the PHQ-9 diagnostic algorithm. Many primary studies publish results for only one approach, and previous meta-analyses of the algorithm approach included only a subset of primary studies that collected data and could have published results. Objective: To use an individual participant data meta-analysis to evaluate the accuracy of two PHQ-9 diagnostic algorithms for detecting major depression and compare accuracy between the algorithms and the standard PHQ-9 cutoff score of ≥10. Methods: Medline, Medline In-Process and Other Non-Indexed Citations, PsycINFO, Web of Science (January 1, 2000, to February 7, 2015). Eligible studies that classified current major depression status using a validated diagnostic interview. Results: Data were included for 54 of 72 identified eligible studies (n participants = 16,688, n cases = 2,091). Among studies that used a semi-structured interview, pooled sensitivity and specificity (95% confidence interval) were 0.57 (0.49, 0.64) and 0.95 (0.94, 0.97) for the original algorithm and 0.61 (0.54, 0.68) and 0.95 (0.93, 0.96) for a modified algorithm. Algorithm sensitivity was 0.22–0.24 lower compared to fully structured interviews and 0.06–0.07 lower compared to the Mini International Neuropsychiatric Interview. Specificity was similar across reference standards. For PHQ-9 cutoff of ≥10 compared to semi-structured interviews, sensitivity and specificity (95% confidence interval) were 0.88 (0.82–0.92) and 0.86 (0.82–0.88). Conclusions: The cutoff score approach appears to be a better option than a PHQ-9 algorithm for detecting major depression.

Details

Language :
English
ISSN :
00333190
Database :
OpenAIRE
Journal :
Psychotherapy and Psychosomatics, 89(1), 25. S. Karger AG, He, C, Levis, B, Riehm, K, Saadat, N, Levis, A, Azar, M, Rice, D, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J A, Kloda, L, Mcmillan, D, Patten, S, Shrier, I, Ziegelstein, R, Akena, D, Arroll, B, Ayalon, L, Baradaran, H, Baron, M, Beraldi, A, Bombardier, C, Butterworth, P, Carter, G, Chagas, M, Chan, J N, Cholera, R, Clover, K, Conwell, Y, De man-van ginkel, J, Fann, J, Fischer, F, Fung, D, Gelaye, B, Goodyear-smith, F, Greeno, C, Hall, B, Harrison, P, Härter, M, Hegerl, U, Hides, L, Hobfoll, S, Hudson, M, Hyphantis, T, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M, Kiely, K, Kwan, Y, Lamers, F, Liu, S, Lotrakul, M, Loureiro, S, Löwe, B, Marsh, L, Mcguire, A, Mohd-sidik, S, Munhoz, T, Muramatsu, K, Osório, F, Patel, V, Pence, B, Persoons, P, Picardi, A, Reuter, K, Rooney, A, Da silva dos santos, I, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P, Turner, A, Van weert, H P M, White, J, Whooley, M, Winkley, K, Yamada, M, Thombs, B & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression: An Individual Participant Data Meta-Analysis ', Psychotherapy and psychosomatics, vol. 89, no. 1, pp. 1-13 . https://doi.org/10.1159/000502294, He, C, Levis, B, Riehm, K E, Saadat, N, Levis, A W, Azar, M, Rice, D B, Krishnan, A, Wu, Y, Sun, Y, Imran, M, Boruff, J, Cuijpers, P, Gilbody, S, Ioannidis, J P A, Kloda, L A, McMillan, D, Patten, S B, Shrier, I, Ziegelstein, R C, Akena, D H, Arroll, B, Ayalon, L, Baradaran, H R, Baron, M, Beraldi, A, Bombardier, C H, Butterworth, P, Carter, G, Chagas, M H N, Chan, J C N, Cholera, R, Clover, K, Conwell, Y, De Man-Van Ginkel, J M, Fann, J R, Fischer, F H, Fung, D, Gelaye, B, Goodyear-Smith, F, Greeno, C G, Hall, B J, Harrison, P A, Härter, M, Hegerl, U, Hides, L, Hobfoll, S E, Hudson, M, Hyphantis, T N, Inagaki, M, Ismail, K, Jetté, N, Khamseh, M E, Kiely, K M, Kwan, Y, Lamers, F, Liu, S I, Lotrakul, M, Loureiro, S R, Löwe, B, Marsh, L, McGuire, A, Mohd-Sidik, S, Munhoz, T N, Muramatsu, K, Osório, F L, Patel, V, Pence, B W, Persoons, P, Picardi, A, Reuter, K, Rooney, A G, Da Silva Dos Santos, I S, Shaaban, J, Sidebottom, A, Simning, A, Stafford, L, Sung, S, Tan, P L L, Turner, A, Van Weert, H C P M, White, J, Whooley, M A, Winkley, K, Yamada, M, Thombs, B D & Benedetti, A 2020, ' The Accuracy of the Patient Health Questionnaire-9 Algorithm for Screening to Detect Major Depression : An Individual Participant Data Meta-Analysis ', Psychotherapy and Psychosomatics, vol. 89, no. 1, pp. 25-37 . https://doi.org/10.1159/000502294, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP, Psychother Psychosom, Psychotherapy and Psychosomatics, 89(1), 25-37. S. Karger AG, Psychotherapy and psychosomatics, 89(1), 25-37. S. Karger AG
Accession number :
edsair.doi.dedup.....8a1f93c28a7b6d89f048b56f72d7d851
Full Text :
https://doi.org/10.1159/000502294