Back to Search Start Over

NURBS or not NURBS?

Authors :
Marie-Laurence Mazure
Calcul des Variations, Géométrie, Image (CVGI )
Laboratoire Jean Kuntzmann (LJK )
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Modélisation Géométrique & Multirésolution pour l'Image (MGMI)
Laboratoire Jean Kuntzmann (LJK)
Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
Univ. Linz, Austria
Source :
Comptes Rendus. Mathématique, Comptes Rendus. Mathématique, Académie des sciences (Paris), 2016, 354 (7), pp.747-750. ⟨10.1016/j.crma.2016.01.027⟩, Comptes Rendus. Mathématique, 2016, 354 (7), pp.747-750. ⟨10.1016/j.crma.2016.01.027⟩, CGTA 2015: Conference on Geometry: Theory and Applications, CGTA 2015: Conference on Geometry: Theory and Applications, Univ. Linz, Austria, Jun 2015, Kefermarkt, Austria
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Conférence invitée; International audience; In this talk the expression NURBS is meant with the general meaning of GeometricallyContinuous Piecewise Quasi-Chebyshevian NURBS, that is, rational B-splines built fromthe largest class $\mathcal C$ of spline spaces which can be used for design. A spline space in $\mathcal C$ hasdifferent Quasi Extended Chebyshev spaces (QEC-spaces) as section-spaces, andwe allow connection matrices at the knots. Moreover, as usual for design, we must requirethe presence of blossoms. We recently achieved a recursive constructive characterisationof the class $\mathcal C$. The important part of this characterisation consists in provingthat a spline space in $\mathcal C$ can automatically be based on infinitely many possible PiecewiseQEC-spaces.Interpreted in an appropriate way, the first step of this construction can be viewed as theconstruction of all rational spline spaces based on a spline space in $\mathcal C$. This guarantees thatany such rational spline space belongs in turn to the class $\mathcal C$ . It thus possesses blossoms aswell as B-spline bases (NURBS in the sense explained earlier).The classical NURBS are thus examples of parametrically continuous splines in theclass $\mathcal C$. Compared to their polynomial counterparts, one major interest of introducing themwas the shape effects permitted by the parameters defining them. Now, a natural questionarises: is it worthwhile building NURBS when the class $\mathcal C$ already provides us with sucha great variety of shape parameters (coming either from the section-spaces or from theconnection matrices) and of exactly represented curves, and when this does not increase theclass $\mathcal C$ ?

Details

ISSN :
1631073X and 17783569
Volume :
354
Database :
OpenAIRE
Journal :
Comptes Rendus Mathematique
Accession number :
edsair.doi.dedup.....8a418f620dbf6336d909fb6246360f75
Full Text :
https://doi.org/10.1016/j.crma.2016.01.027