Back to Search Start Over

Integration of time-series meta-omics data reveals how microbial ecosystems respond to disturbance

Authors :
James M. Schupp
Emilie E. L. Muller
Christian Jäger
Paul Keim
Laura Lebrun
Haixu Tang
Malte Herold
Paul Wilmes
Hugo Roume
Sujun Li
Michael R. Hoopmann
John D. Gillece
Patrick May
Abdul Sheik
Benoit J. Kunath
Luise A. K. Kleine-Borgmann
Irina Bessarab
Cedric Christian Laczny
Susana Martinez Arbas
Rohan Benjamin Hugh Williams
Yuzhen Ye
Anna Heintz-Buschart
Robert L. Moritz
Shaman Narayanasamy
MetaGenoPolis (MGP (US 1367))
Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
Génétique moléculaire, génomique, microbiologie (GMGM)
Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Communications, Nature Communications, Nature Publishing Group, 2020, 11 (1), ⟨10.1038/s41467-020-19006-2⟩, Nature Communications, Vol 11, Iss 1, Pp 1-14 (2020)
Publication Year :
2020
Publisher :
Springer Science and Business Media LLC, 2020.

Abstract

The development of reliable, mixed-culture biotechnological processes hinges on understanding how microbial ecosystems respond to disturbances. Here we reveal extensive phenotypic plasticity and niche complementarity in oleaginous microbial populations from a biological wastewater treatment plant. We perform meta-omics analyses (metagenomics, metatranscriptomics, metaproteomics and metabolomics) on in situ samples over 14 months at weekly intervals. Based on 1,364 de novo metagenome-assembled genomes, we uncover four distinct fundamental niche types. Throughout the time-series, we observe a major, transient shift in community structure, coinciding with substrate availability changes. Functional omics data reveals extensive variation in gene expression and substrate usage amongst community members. Ex situ bioreactor experiments confirm that responses occur within five hours of a pulse disturbance, demonstrating rapid adaptation by specific populations. Our results show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity, and set the foundation for future ecological engineering efforts.<br />Herold et al. present an integrated meta-omics framework to investigate how mixed microbial communities, such as oleaginous bacterial populations in biological wastewater treatment plants, respond with distinct adaptation strategies to disturbances. They show that community resistance and resilience are a function of phenotypic plasticity and niche complementarity.

Details

ISSN :
20411723
Volume :
11
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....8a508d5887429a06c8acf64388295318
Full Text :
https://doi.org/10.1038/s41467-020-19006-2