Back to Search Start Over

MULTI-BRANCH DEEP LEARNING MODEL FOR DETECTION OF SETTLEMENTS WITHOUT ELECTRICITY

Authors :
Thomas Di Martino
Elise Colin Koeniguer
Maxime Lenormand
DTIS, ONERA, Université Paris Saclay [Palaiseau]
ONERA-Université Paris-Saclay
CentraleSupélec
GREC, christine
Source :
IGARSS 2021, IGARSS 2021, Jul 2021, BRUXELLES, Belgium, IGARSS
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

International audience; We introduce a multi-branch Deep Learning architecture that allows for the extraction of multi-scale features. Exploiting the data multi-modality structure through the combined use of various feature extractors provides high performance on data fusion tasks. Furthermore, the representation of the multitemporality of the data using sensor-specific 3D convolutions with custom kernel size extracts temporal features at an early computation stage. Our methodology allows reaching performance up to 0.8876 F1 Score on the development phase dataset and around 0.8798 on the test phase dataset. Finally, we demonstrate the contribution of each sensor to the prediction task with the design of data-focused experiments.

Details

Language :
English
Database :
OpenAIRE
Journal :
IGARSS 2021, IGARSS 2021, Jul 2021, BRUXELLES, Belgium, IGARSS
Accession number :
edsair.doi.dedup.....8aa1cbbe5184b77e93b5df1b17bbdb48