Back to Search
Start Over
Quantitative scoring of epithelial and mesenchymal qualities of cancer cells using machine learning and quantitative phase imaging
- Source :
- Journal of Biomedical Optics
- Publication Year :
- 2020
- Publisher :
- Society of Photo-Optical Instrumentation Engineers, 2020.
-
Abstract
- Significance: We introduce an application of machine learning trained on optical phase features of epithelial and mesenchymal cells to grade cancer cells’ morphologies, relevant to evaluation of cancer phenotype in screening assays and clinical biopsies. Aim: Our objective was to determine quantitative epithelial and mesenchymal qualities of breast cancer cells through an unbiased, generalizable, and linear score covering the range of observed morphologies. Approach: Digital holographic microscopy was used to generate phase height maps of noncancerous epithelial (Gie-No3B11) and fibroblast (human gingival) cell lines, as well as MDA-MB-231 and MCF-7 breast cancer cell lines. Several machine learning algorithms were evaluated as binary classifiers of the noncancerous cells that graded the cancer cells by transfer learning. Results: Epithelial and mesenchymal cells were classified with 96% to 100% accuracy. Breast cancer cells had scores in between the noncancer scores, indicating both epithelial and mesenchymal morphological qualities. The MCF-7 cells skewed toward epithelial scores, while MDA-MB-231 cells skewed toward mesenchymal scores. Linear support vector machines (SVMs) produced the most distinct score distributions for each cell line. Conclusions: The proposed epithelial–mesenchymal score, derived from linear SVM learning, is a sensitive and quantitative approach for detecting epithelial and mesenchymal characteristics of unknown cells based on well-characterized cell lines. We establish a framework for rapid and accurate morphological evaluation of single cells and subtle phenotypic shifts in imaged cell populations.
- Subjects :
- Paper
Cell
Biomedical Engineering
Gingiva
Holography
epithelial
Breast Neoplasms
Biology
mesenchymal
Machine learning
computer.software_genre
01 natural sciences
Imaging
010309 optics
Biomaterials
Machine Learning
Breast cancer
0103 physical sciences
medicine
Humans
support vector machine
quantitative phase
Fibroblast
business.industry
Mesenchymal stem cell
Cancer
Epithelial Cells
Mesenchymal Stem Cells
Fibroblasts
medicine.disease
Phenotype
Atomic and Molecular Physics, and Optics
Electronic, Optical and Magnetic Materials
medicine.anatomical_structure
Cell culture
Cancer cell
cancer cells
MCF-7 Cells
Female
Artificial intelligence
business
computer
Algorithms
Subjects
Details
- Language :
- English
- ISSN :
- 15602281 and 10833668
- Volume :
- 25
- Issue :
- 2
- Database :
- OpenAIRE
- Journal :
- Journal of Biomedical Optics
- Accession number :
- edsair.doi.dedup.....8b7752eac247ddbfbbe0dd2055eb50f0