Back to Search Start Over

Numerical studies of confined states in rotated bilayers of graphene

Authors :
Didier Mayou
Laurence Magaud
G. Trambly de Laissardière
Laboratoire de Physique Théorique et Modélisation (LPTM - UMR 8089)
Centre National de la Recherche Scientifique (CNRS)-CY Cergy Paris Université (CY)
Optique et Matériaux (OPTIMA)
Institut Néel (NEEL)
Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)
Systèmes hybrides de basse dimensionnalité (HYBRID)
Source :
Physical Review B: Condensed Matter and Materials Physics (1998-2015), Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2012, 86 (12), pp.125413. ⟨10.1103/PhysRevB.86.125413⟩
Publication Year :
2012
Publisher :
arXiv, 2012.

Abstract

Rotated graphene multilayers form a new class of graphene related systems with electronic properties that drastically depend on the rotation angles. It has been shown that bilayers behave like two isolated graphene planes for large rotation angles. For smaller angles, states in the Dirac cones belonging to the two layers interact resulting in the appearance of two van Hove singularities. States become localised as the rotation angle decreases and the two van Hove singularities merge into one peak at the Dirac energy. Here we go further and consider bilayers with very small rotation angles. In this case, well defined regions of AA stacking exist in the bilayer supercell and we show that states are confined in these regions for energies in the [-\gamma_t, +\gamma_t] range with \gamma_t the interplane mean interaction. As a consequence, the local densities of states show discrete peaks for energies different from the Dirac energy.<br />Comment: 8 pages

Details

ISSN :
10980121 and 1550235X
Database :
OpenAIRE
Journal :
Physical Review B: Condensed Matter and Materials Physics (1998-2015), Physical Review B: Condensed Matter and Materials Physics (1998-2015), American Physical Society, 2012, 86 (12), pp.125413. ⟨10.1103/PhysRevB.86.125413⟩
Accession number :
edsair.doi.dedup.....8b805c6ead87b52fbf9c585e1609343d
Full Text :
https://doi.org/10.48550/arxiv.1203.3144