Back to Search Start Over

$^{222}$Rn emanation measurements for the XENON1T experiment

Authors :
Atsushi Takeda
Lorenzo Bellagamba
G. Eurin
J. Howlett
Shingo Kazama
M. Garbini
M. Messina
F. Joerg
H. Qiu
Jan Conrad
F. Semeria
Gabriella Sartorelli
Michelle Galloway
E. Shockley
A. Kopec
Qing Lin
L. Levinson
J.M.F. dos Santos
D. Masson
João Cardoso
M. L. Benabderrahmane
Ethan Brown
F. Agostini
Miguel Silva
W. Fulgione
J. Ye
F. Gao
L. Grandi
Yuehuan Wei
J. P. Zopounidis
D. Cichon
E. López Fune
Jean-Pierre Cussonneau
G. Koltman
S. Mastroianni
K. Morå
N. Rupp
Abbe Brown
F. Arneodo
M. Murra
R. Di Stefano
H. Landsman
K. Martens
Kaixuan Ni
Bart Pelssers
D. Wenz
M. Vargas
A. Gallo Rosso
Yanxi Zhang
C. Hasterok
N. Šarčević
R. Peres
C. Macolino
P. A. Breur
Sara Diglio
A. Depoian
C. Capelli
M. Selvi
L. Hoetzsch
Kentaro Miuchi
C. Therreau
F. Lombardi
Thomas Berger
C. Tunnell
A. Elykov
Ran Budnik
Elena Aprile
K. Odgers
Uwe Oberlack
Laura Baudis
Gian Carlo Trinchero
D. Ramírez García
Julien Masbou
H. Simgen
A. Rocchetti
Stefan Lindemann
P. Gaemers
Giacomo Bruno
Marc Schumann
P. Shagin
M. Clark
Joern Mahlstedt
S. Bruenner
J. Wulf
J. A. M. Lopes
Z. Xu
J. Palacio
G. Plante
E. Angelino
J. Pienaar
M. Alfonsi
M. Kobayashi
R. Gaior
N. Kato
C. Wittweg
Jelle Aalbers
F. D. Amaro
Masaki Yamashita
Katsuki Hiraide
Yoshitaka Itow
A. Di Giovanni
Y. Mosbacher
Fabrizio Marignetti
Laura Manenti
M. Weiss
D. Coderre
R. F. Lang
Boris Bauermeister
P. Di Gangi
Guido Zavattini
A. Molinario
J. Qin
M. Scheibelhut
M. Iacovacci
C. Hils
O. Wack
T. Zhu
V. Pizzella
L. Althueser
J. Naganoma
Shigetaka Moriyama
C. Weinheimer
A. Manfredini
L. Scotto Lavina
A. D. Ferella
T. Marrodán Undagoitia
Han Wang
G. Volta
E. Hogenbirk
V. C. Antochi
S. Schindler
D. Schulte
Dominique Thers
J. Westermann
S. Reichard
D. Barge
B. Cimmino
J. Schreiner
M. P. Decowski
Manfred Lindner
Auke-Pieter Colijn
F. Toschi
J. R. Angevaare
Laboratoire de physique subatomique et des technologies associées (SUBATECH)
Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Laboratoire de Physique Nucléaire et de Hautes Énergies (LPNHE (UMR_7585))
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Laboratoire de Physique des 2 Infinis Irène Joliot-Curie (IJCLab)
Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS)
XENON
XENON (IHEF, IoP, FNWI)
Aprile, E
Aalbers, J
Agostini, F
Alfonsi, M
Althueser, L
Amaro, F D
Antochi, V C
Angelino, E
Angevaare, J R
Arneodo, F
Barge, D
Baudis, L
Bauermeister, B
Bellagamba, L
Benabderrahmane, M L
Berger, T
Breur, P A
Brown, A
Brown, E
Bruenner, S
Bruno, G
Budnik, R
Capelli, C
Cardoso, J M R
Cichon, D
Cimmino, B
Clark, M
Coderre, D
Colijn, A P
Conrad, J
Cussonneau, J P
Decowski, M P
Depoian, A
Di Gangi, P
Di Giovanni, A
Di Stefano, R
Diglio, S
Elykov, A
Eurin, G
Ferella, A D
Fulgione, W
Gaemers, P
Gaior, R
Rosso, A Gallo
Galloway, M
Gao, F
Grandi, L
Garbini, M
Hasterok, C
Hils, C
Hiraide, K
Hoetzsch, L
Hogenbirk, E
Howlett, J
Iacovacci, M
Itow, Y
Joerg, F
Kato, N
Kazama, S
Kobayashi, M
Koltman, G
Kopec, A
Landsman, H
Lang, R F
Levinson, L
Lin, Q
Lindemann, S
Lindner, M
Lombardi, F
Lopes, J A M
López Fune, E
Macolino, C
Mahlstedt, J
Manenti, L
Manfredini, A
Marignetti, F
Undagoitia, T Marrodán
Martens, K
Masbou, J
Masson, D
Mastroianni, S
Messina, M
Miuchi, K
Molinario, A
Morå, K
Moriyama, S
Mosbacher, Y
Murra, M
Naganoma, J
Ni, K
Oberlack, U
Odgers, K
Palacio, J
Pelssers, B
Peres, R
Pienaar, J
Pizzella, V
Plante, G
Qin, J
Qiu, H
García, D Ramírez
Reichard, S
Rocchetti, A
Rupp, N
Santos, J M F Do
Sartorelli, G
Šarčević, N
Scheibelhut, M
Schindler, S
Schreiner, J
Schulte, D
Schumann, M
Lavina, L Scotto
Selvi, M
Semeria, F
Shagin, P
Shockley, E
Silva, M
Simgen, H
Takeda, A
Therreau, C
Thers, D
Toschi, F
Trinchero, G
Tunnell, C
Vargas, M
Volta, G
Wack, O
Wang, H
Wei, Y
Weinheimer, C
Weiss, M
Wenz, D
Westermann, J
Wittweg, C
Wulf, J
Xu, Z
Yamashita, M
Ye, J
Zavattini, G
Zhang, Y
Zhu, T
Zopounidis, J P
Columbia University [New York]
Oskar Klein Centre [Stockholm]
Stockholm University
University of Bologna
Johannes Gutenberg - Universität Mainz (JGU)
Westfälische Wilhelms-Universität Münster (WWU)
Università degli studi di Torino (UNITO)
New York University [Abu Dhabi]
NYU System (NYU)
Source :
European Physical Journal C: Particles and Fields, European Physical Journal C: Particles and Fields, Springer Verlag (Germany), 2021, 81 (4), pp.337. ⟨10.1140/epjc/s10052-020-08777-z⟩, BASE-Bielefeld Academic Search Engine, European Physical Journal C, 81(4):337. Springer New York, The European Physical Journal C: Particles and Fields, European Physical Journal C: Particles and Fields, Springer Verlag (Germany), 2021, 81 (4), ⟨10.1140/epjc/s10052-020-08777-z⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The selection of low-radioactive construction materials is of utmost importance for the success of low-energy rare event search experiments. Besides radioactive contaminants in the bulk, the emanation of radioactive radon atoms from material surfaces attains increasing relevance in the effort to further reduce the background of such experiments. In this work, we present the $^{222}$Rn emanation measurements performed for the XENON1T dark matter experiment. Together with the bulk impurity screening campaign, the results enabled us to select the radio-purest construction materials, targeting a $^{222}$Rn activity concentration of 10 $\mu$Bq/kg in 3.2 t of xenon. The knowledge of the distribution of the $^{222}$Rn sources allowed us to selectively eliminate critical components in the course of the experiment. The predictions from the emanation measurements were compared to data of the $^{222}$Rn activity concentration in XENON1T. The final $^{222}$Rn activity concentration of (4.5 $\pm$ 0.1) $\mu$Bq/kg in the target of XENON1T is the lowest ever achieved in a xenon dark matter experiment.<br />Comment: 14 pages, 3 figures

Details

Language :
English
ISSN :
14346044 and 14346052
Database :
OpenAIRE
Journal :
European Physical Journal C: Particles and Fields, European Physical Journal C: Particles and Fields, Springer Verlag (Germany), 2021, 81 (4), pp.337. ⟨10.1140/epjc/s10052-020-08777-z⟩, BASE-Bielefeld Academic Search Engine, European Physical Journal C, 81(4):337. Springer New York, The European Physical Journal C: Particles and Fields, European Physical Journal C: Particles and Fields, Springer Verlag (Germany), 2021, 81 (4), ⟨10.1140/epjc/s10052-020-08777-z⟩
Accession number :
edsair.doi.dedup.....8ba31bc3ac2eb296f8bfe0c526bdb3d7
Full Text :
https://doi.org/10.1140/epjc/s10052-020-08777-z⟩