Back to Search
Start Over
High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy
- Source :
- Nano letters, 18 (2018): 505–512. doi:10.1021/acs.nanolett.7b04472, info:cnr-pdr/source/autori:Basso Basset F.; Bietti S.; Reindl M.; Esposito L.; Fedorov A.; Huber D.; Rastelli A.; Bonera E.; Trotta R.; Sanguinetti S./titolo:High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy/doi:10.1021%2Facs.nanolett.7b04472/rivista:Nano letters (Print)/anno:2018/pagina_da:505/pagina_a:512/intervallo_pagine:505–512/volume:18, Nano Letters
- Publication Year :
- 2017
-
Abstract
- Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route towards quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared to previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.<br />14 pages, 3 figures
- Subjects :
- Photon
Materials science
Dephasing
FOS: Physical sciences
Bioengineering
02 engineering and technology
Quantum entanglement
01 natural sciences
7. Clean energy
droplet epitaxy
rubidium
Photon entanglement
Mesoscale and Nanoscale Physics (cond-mat.mes-hall)
0103 physical sciences
General Materials Science
Fine structure
010306 general physics
entagled photon
III-V
Quantum
resonant two-photon excitation
fine structure splitting
FIS/03 - FISICA DELLA MATERIA
Quantum network
Quantum Physics
Condensed Matter - Mesoscale and Nanoscale Physics
business.industry
Quantum dots
Mechanical Engineering
Quantum dot
General Chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
Condensed Matter::Mesoscopic Systems and Quantum Hall Effect
entanglement
Optoelectronics
Quantum Physics (quant-ph)
0210 nano-technology
business
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Nano letters, 18 (2018): 505–512. doi:10.1021/acs.nanolett.7b04472, info:cnr-pdr/source/autori:Basso Basset F.; Bietti S.; Reindl M.; Esposito L.; Fedorov A.; Huber D.; Rastelli A.; Bonera E.; Trotta R.; Sanguinetti S./titolo:High-Yield Fabrication of Entangled Photon Emitters for Hybrid Quantum Networking Using High-Temperature Droplet Epitaxy/doi:10.1021%2Facs.nanolett.7b04472/rivista:Nano letters (Print)/anno:2018/pagina_da:505/pagina_a:512/intervallo_pagine:505–512/volume:18, Nano Letters
- Accession number :
- edsair.doi.dedup.....8bb77f3c74d4d83432752d3a31d95aa9
- Full Text :
- https://doi.org/10.1021/acs.nanolett.7b04472