Back to Search
Start Over
Multireference Perturbation Theory Combined with PCM and RISM Solvation Models: A Benchmark Study for Chemical Energetics
- Source :
- The Journal of Physical Chemistry A. 125:8324-8336
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- The polarizable continuum model (PCM) has been one of the most widely used approaches to take into account the solvation effect in quantum chemical calculations. In this paper, we performed a series of benchmark calculations to assess the accuracy of the PCM scheme combined with the second-order complete-active-space perturbation theory (CASPT2) for molecular systems in polar solvents. For solute molecules with extensive conjugated π orbitals, exemplified by elongated conjugated arylcarbenes, we have incorporated the ab initio density matrix renormalization group algorithm into the PCM-CASPT2 method. In the previous work, we presented a combination of the DMRG-CASPT2 method with the reference interaction site model (RISM) theory for describing the solvation effect using the radial distribution function and compared its performance to the widely used density-functional approaches (PCM-TD-DFT). The work here allows us to further show a more thorough assessment of the RISM model compared to the PCM with an equal level of the wave function treatment, the (DMRG-)CASPT2 theory, toward a high-accuracy electronic structure calculations for solvated chemical systems. With the exception that the PCM models are not capable of properly describing the hydrogen bondings, accuracy of the PCM-CASPT2 model is in most cases quite comparable to the RISM counterpart.
Details
- ISSN :
- 15205215 and 10895639
- Volume :
- 125
- Database :
- OpenAIRE
- Journal :
- The Journal of Physical Chemistry A
- Accession number :
- edsair.doi.dedup.....8bb7b892d8ef5404d213ba2470100caa
- Full Text :
- https://doi.org/10.1021/acs.jpca.1c05944