Back to Search Start Over

Realistic multi-cellular dosimetry for 177 Lu-labelled antibodies: model and application

Authors :
Sara Marcatili
Riad Ladjohounlou
Helen Heyerdahl
Jostein Dahle
Alexandre Pichard
Isabelle Navarro-Teulon
A. Courteau
Manuel Bardiès
Jean-Pierre Pouget
Ada H. V. Repetto-Llamazares
Centre de Recherches en Cancérologie de Toulouse (CRCT)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)
Institut de Recherche en Cancérologie de Montpellier (IRCM - U1194 Inserm - UM)
CRLCC Val d'Aurelle - Paul Lamarque-Université de Montpellier (UM)-Institut National de la Santé et de la Recherche Médicale (INSERM)
CRLCC Val d'Aurelle - Paul Lamarque-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)
Source :
Physics in Medicine and Biology, Physics in Medicine and Biology, IOP Publishing, 2016, 61 (19), pp.6935-6952. ⟨10.1088/0031-9155/61/19/6935⟩
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

International audience; Current preclinical dosimetric models often fail to take account of the complex nature of absorbed dose distribution typical of in vitro clonogenic experiments in targeted radionuclide therapy. For this reason, clonogenic survival is often expressed as a function of added activity rather than the absorbed dose delivered to cells/cell nuclei. We designed a multi-cellular dosimetry model that takes into account the realistic distributions of cells in the Petri dish, for the establishment of survival curves as a function of the absorbed dose. General-purpose software tools were used for the generation of realistic, randomised 3D cell culture geometries based on experimentally determined parameters (cell size, cell density, cluster density, average cluster size, cell cumulated activity). A mixture of Monte Carlo and analytical approaches was implemented in order to achieve as accurate as possible results while reducing calculation time. The model was here applied to clonogenic survival experiments carried out to compare the efficacy of Betalutin®, a novel 177Lu-labelled antibody radionuclide conjugate for the treatment of non-Hodgkin lymphoma, to that of 177Lu-labelled CD20-specific (rituximab) and non-specific antibodies (Erbitux) on lymphocyte B cells. The 3D cellular model developed allowed a better understanding of the radiative and non-radiative processes associated with cellular death. Our approach is generic and can also be applied to other radiopharmaceuticals and cell distributions.

Details

Language :
English
ISSN :
00319155 and 13616560
Database :
OpenAIRE
Journal :
Physics in Medicine and Biology, Physics in Medicine and Biology, IOP Publishing, 2016, 61 (19), pp.6935-6952. ⟨10.1088/0031-9155/61/19/6935⟩
Accession number :
edsair.doi.dedup.....8bbd4509a346a50885713c5fcfc9e0c5
Full Text :
https://doi.org/10.1088/0031-9155/61/19/6935⟩