Back to Search Start Over

Fibers of multi-graded rational maps and orthogonal projection onto rational surfaces

Authors :
Fatmanur Yildirim
Marc Chardin
Nicolás Botbol
Laurent Busé
Departamento de Matemática [Buenos Aires]
Facultad de Ciencias Exactas y Naturales [Buenos Aires] (FCEyN)
Universidad de Buenos Aires [Buenos Aires] (UBA)-Universidad de Buenos Aires [Buenos Aires] (UBA)
AlgebRe, geOmetrie, Modelisation et AlgoriTHmes (AROMATH)
Inria Sophia Antipolis - Méditerranée (CRISAM)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens (NKUA)
Institut de Mathématiques de Jussieu - Paris Rive Gauche (IMJ-PRG (UMR_7586))
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Sk lodowska-Curie grant agreement No 675789. Thanks also go to the authors and contributors of the software Macaulay2 [18] that has been very helpful to compute many lightning examples in this work.
European Project: 675789,H2020 Pilier Excellent Science,H2020-MSCA-ITN-2015,ARCADES(2016)
Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-National and Kapodistrian University of Athens = University of Athens (NKUA | UoA)
Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Source :
SIAM Journal on Applied Algebra and Geometry, SIAM Journal on Applied Algebra and Geometry, Society for Industrial and Applied Mathematics 2020, 4 (2), pp.322-353. ⟨10.1137/19M1289522⟩, SIAM Journal on Applied Algebra and Geometry, 2020, 4 (2), pp.322-353. ⟨10.1137/19M1289522⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; We contribute a new algebraic method for computing the orthogonal projections of a point onto a rational algebraic surface embedded in the three dimensional projective space. This problem is first turned into the computation of the finite fibers of a generically finite dominant rational map: a congruence of normal lines to the rational surface. Then, an in-depth study of certain syzygy modules associated to such a congruence is presented and applied to build elimination matrices that provide universal representations of its finite fibers, under some genericity assumptions. These matrices depend linearly in the variables of the three dimensional space. They can be pre-computed so that the orthogonal projections of points are approximately computed by means of fast and robust numerical linear algebra calculations.

Details

Language :
English
ISSN :
24706566
Database :
OpenAIRE
Journal :
SIAM Journal on Applied Algebra and Geometry, SIAM Journal on Applied Algebra and Geometry, Society for Industrial and Applied Mathematics 2020, 4 (2), pp.322-353. ⟨10.1137/19M1289522⟩, SIAM Journal on Applied Algebra and Geometry, 2020, 4 (2), pp.322-353. ⟨10.1137/19M1289522⟩
Accession number :
edsair.doi.dedup.....8cd9c01619c0ee85c1852ca9373f34ad
Full Text :
https://doi.org/10.1137/19M1289522⟩