Back to Search
Start Over
Mechanistic Investigation of Castagnoli–Cushman Multicomponent Reactions Leading to a Three-Component Synthesis of Dihydroisoquinolones
- Source :
- The Journal of Organic Chemistry. 86:11599-11607
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- The mechanisms for the three- and four-component variants of the Castagnoli-Cushman reaction (CCR) have been investigated. A series of crossover experiments were conducted to probe the structure and reactivity of known amide-acid intermediates for the three- and four-component variants of the CCR (3CR and 4CR, respectively). Control experiments paired with in situ reaction monitoring with infrared spectroscopy for the 4CR align with a mechanism in which amide-acids derived from maleic anhydride can reversibly form free amine and cyclic anhydride. Although this equilibrium is unfavorable, the aldehyde present can trap the primary amine through imine formation and react with the enol form of the anhydride through a Mannich-like mechanism. This detailed mechanistic investigation coupled with additional crossover experiments supports an analogous mechanism for the 3CR and has led to the elucidation of new 3CR conditions with homophthalic anhydride, amines, and aldehydes for the formation of dihydroisoquinolones in good yields and excellent diastereoselectivity. This work represents the culmination of more than a decade of mechanistic speculation for the 3- and 4CR, enabling the design of new multicomponent reactions that exploit this novel mechanism.
- Subjects :
- chemistry.chemical_classification
Aldehydes
Primary (chemistry)
010405 organic chemistry
Organic Chemistry
Imine
Infrared spectroscopy
Maleic anhydride
010402 general chemistry
Amides
01 natural sciences
Enol
Aldehyde
Anhydrides
0104 chemical sciences
chemistry.chemical_compound
chemistry
Computational chemistry
Amine gas treating
Reactivity (chemistry)
Imines
Amines
Subjects
Details
- ISSN :
- 15206904 and 00223263
- Volume :
- 86
- Database :
- OpenAIRE
- Journal :
- The Journal of Organic Chemistry
- Accession number :
- edsair.doi.dedup.....8d5123266477f8a56eaf81a3f98a844c