Back to Search Start Over

Experimental evidence of near-wall reverse flow events in a zero pressure gradient turbulent boundary layer

Authors :
Andreas Schröder
Jean-Marc Foucaut
Julio Soria
Janos Agocs
Anni Röse
C. Cuvier
Rainer Hain
Jean-Philippe Laval
Reinhard Geisler
Omid Amili
Christian J. Kähler
Sven Scharnowski
Christian Willert
Callum Atkinson
Michel Stanislas
Joachim Klinner
S. Srinath
German Aerospace Center [DLR]
Laboratoire de Mécanique des Fluides de Lille – Kampé de Fériet - UMR 9014 [LMFL]
Monash University [Clayton]
Universität der Bundeswehr München [Neubiberg]
German Aerospace Center (DLR)
Laboratoire de Mécanique de Lille - FRE 3723 (LML)
Université de Lille, Sciences et Technologies-Centrale Lille-Centre National de la Recherche Scientifique (CNRS)
University of Minnesota [Twin Cities] (UMN)
University of Minnesota System
Institute for Fluidmechanics and Aerodynamics (IFA)
Deutsches Inst. Kautschuktechnologie
German Aerospace Centre (DLR), Institute of Aerodynamics & Flow Technology
Université de Lille, Sciences et Technologies-Ecole Centrale de Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Source :
Experimental Thermal and Fluid Science, Experimental Thermal and Fluid Science, Elsevier, 2017, ⟨10.1016/j.expthermflusci.2017.10.033⟩
Publication Year :
2017

Abstract

This study reports on experimentally observed rare near-wall reverse flow events in a fully developed turbulent flat plate boundary layer at zero pressure gradient with Reynolds numbers between Re θ ≈ 2500 and Re θ ≈ 8000 ( Re τ ≈ 800 – 2400 ). The reverse flow events are captured using high magnification particle image velocimetry sequences with record lengths varying from 50 000 to 126 000 samples. Time resolved particle image sequences allow singular reverse flow events to be followed over several time steps whereas long records of nearly statistically independent samples provide a variety of single snapshots at a higher spatial resolution. The probability of occurrence lies in the order of 0.012–0.018% which matches predictions from direct numerical simulations (DNS). The typical size of the reverse flow bubble is about 30 wall units in length and 5 wall units in height which agrees well with similar observations made in existing DNS data.

Details

Language :
English
ISSN :
08941777
Database :
OpenAIRE
Journal :
Experimental Thermal and Fluid Science, Experimental Thermal and Fluid Science, Elsevier, 2017, ⟨10.1016/j.expthermflusci.2017.10.033⟩
Accession number :
edsair.doi.dedup.....8d8a42914dd36d61a9aaf7b105eb3063