Back to Search
Start Over
Soft-X study of buried interfaces in stratified media
- Source :
- Proceedings of SPIE, the International Society for Optical Engineering 7995 (2011): 1–9. doi:10.1117/12.888179, info:cnr-pdr/source/autori:MAHNE N (1); GIGLIA A. (1); SPONZA L. (1,2); VERNA A. (1); NANNARONE S. (3)/titolo:Soft-X study of buried interfaces in stratified media/doi:10.1117%2F12.888179/rivista:Proceedings of SPIE, the International Society for Optical Engineering/anno:2011/pagina_da:1/pagina_a:9/intervallo_pagine:1–9/volume:7995, Seventh International Conference on Thin Film Physics and Applications, Seventh International Conference on Thin Film Physics and Applications, Sep 2010, Shanghai, France. pp.79951S, ⟨10.1117/12.888179⟩
- Publication Year :
- 2011
- Publisher :
- SPIE, The International Society for Optical Engineering, Bellingham, WA, 2011.
-
Abstract
- International audience; The performance of multilayer optics depends on the quality of the buried interfaces between materials, whose intermixing strongly affects their behavior. We present an experimental method to determine, in a non destructively way, the amount of material intermixing at interfaces of multilayer structures. The reflection mechanism is related to the build up in the multilayer of a standing wave field, whose peaks and the valleys move as a function both of wavelength and of incidence angle. Exploiting this fact it is possible to modulate the electric field inside the multilayer in order to have different parts of the multilayer structure excited at a different extent and in particular the buried interfaces regions. The excitation is directly proportional to the intensity of the electric field and to the concentration of a given element in the sample. The excitation can be detected with different techniques, f.i. electron core level photoemission, fluorescence, luminescence, total electron yield. The flexibility of the experimental apparatus of the BEAR beamline (Elettra Trieste, Italy) allowed us to study some important classes of layered structures in the soft X-ray energy range, using the above mentioned techniques together with the determination of the Bragg conditions through the measurement of the specular reflectivity. We demonstrate the possibility of obtaining quantitative information on the width of the intermixing region, strongly related to the interface roughness, through the comparison with a phenomenological model of the intermixing and a numerical simulation of the standing field inside the multilayer.
- Subjects :
- Materials science
Field (physics)
business.industry
multilayer
02 engineering and technology
021001 nanoscience & nanotechnology
01 natural sciences
Standing wave
Wavelength
Condensed Matter::Materials Science
Optics
Electric field
0103 physical sciences
Phenomenological model
Reflection (physics)
[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]
Specular reflection
buried interfaces
010306 general physics
0210 nano-technology
business
Excitation
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Proceedings of SPIE, the International Society for Optical Engineering 7995 (2011): 1–9. doi:10.1117/12.888179, info:cnr-pdr/source/autori:MAHNE N (1); GIGLIA A. (1); SPONZA L. (1,2); VERNA A. (1); NANNARONE S. (3)/titolo:Soft-X study of buried interfaces in stratified media/doi:10.1117%2F12.888179/rivista:Proceedings of SPIE, the International Society for Optical Engineering/anno:2011/pagina_da:1/pagina_a:9/intervallo_pagine:1–9/volume:7995, Seventh International Conference on Thin Film Physics and Applications, Seventh International Conference on Thin Film Physics and Applications, Sep 2010, Shanghai, France. pp.79951S, ⟨10.1117/12.888179⟩
- Accession number :
- edsair.doi.dedup.....8dc003b64d637006c4b9b1ab93c4c7b4
- Full Text :
- https://doi.org/10.1117/12.888179