Back to Search Start Over

Towards realistic laparoscopic image generation using image-domain translation

Authors :
Francesco Calimeri
Michele Catellani
Sara Moccia
Elena De Momi
Aldo Marzullo
Source :
Computer Methods and Programs in Biomedicine. 200:105834
Publication Year :
2021
Publisher :
Elsevier BV, 2021.

Abstract

Background and ObjectivesOver the last decade, Deep Learning (DL) has revolutionized data analysis in many areas, including medical imaging. However, there is a bottleneck in the advancement of DL in the surgery field, which can be seen in a shortage of large-scale data, which in turn may be attributed to the lack of a structured and standardized methodology for storing and analyzing surgical images in clinical centres. Furthermore, accurate annotations manually added are expensive and time consuming. A great help can come from the synthesis of artificial images; in this context, in the latest years, the use of Generative Adversarial Neural Networks (GANs) achieved promising results in obtaining photo-realistic images. MethodsIn this study, a method for Minimally Invasive Surgery (MIS) image synthesis is proposed. To this aim, the generative adversarial network pix2pix is trained to generate paired annotated MIS images by transforming rough segmentation of surgical instruments and tissues into realistic images. An additional regularization term was added to the original optimization problem, in order to enhance realism of surgical tools with respect to the background. Results Quantitative and qualitative (i.e., human-based) evaluations of generated images have been carried out in order to assess the effectiveness of the method. ConclusionsExperimental results show that the proposed method is actually able to translate MIS segmentations to realistic MIS images, which can in turn be used to augment existing data sets and help at overcoming the lack of useful images; this allows physicians and algorithms to take advantage from new annotated instances for their training.

Details

ISSN :
01692607
Volume :
200
Database :
OpenAIRE
Journal :
Computer Methods and Programs in Biomedicine
Accession number :
edsair.doi.dedup.....8dd81c4301fbfe7a0233f50d82146977
Full Text :
https://doi.org/10.1016/j.cmpb.2020.105834