Back to Search Start Over

Integrated analysis of multimodal single-cell data

Authors :
Marlon Stoeckius
Shiwei Zheng
Stephanie Hao
Rahul Satija
Lamar M. Fleming
Maddie Jane Lee
Eleni P. Mimitou
Raphael Gottardo
Erica Andersen-Nissen
Jaison Jain
Peter Smibert
Juliana M. McElrath
Andrew Butler
Avi Srivastava
Catherine A. Blish
William M. Mauck
Yuhan Hao
Aaron J. Wilk
Bertrand Z. Yeung
Michael Zager
Efthymia Papalexi
Paul Hoffman
Angela J. Rogers
Charlotte A. Darby
Tim Stuart
Source :
Cell
Publication Year :
2020

Abstract

Summary The simultaneous measurement of multiple modalities represents an exciting frontier for single-cell genomics and necessitates computational methods that can define cellular states based on multimodal data. Here, we introduce “weighted-nearest neighbor” analysis, an unsupervised framework to learn the relative utility of each data type in each cell, enabling an integrative analysis of multiple modalities. We apply our procedure to a CITE-seq dataset of 211,000 human peripheral blood mononuclear cells (PBMCs) with panels extending to 228 antibodies to construct a multimodal reference atlas of the circulating immune system. Multimodal analysis substantially improves our ability to resolve cell states, allowing us to identify and validate previously unreported lymphoid subpopulations. Moreover, we demonstrate how to leverage this reference to rapidly map new datasets and to interpret immune responses to vaccination and coronavirus disease 2019 (COVID-19). Our approach represents a broadly applicable strategy to analyze single-cell multimodal datasets and to look beyond the transcriptome toward a unified and multimodal definition of cellular identity.<br />Graphical abstract<br />Highlights • “Weighted nearest neighbor” analysis integrates multimodal single-cell data • A multimodal reference “atlas” of the circulating human immune system • Identification and validation of novel sources of lymphoid heterogeneity • “Reference-based” mapping of query datasets onto a multimodal atlas<br />A framework that allows for the integration of multiple data types using single cells is applied to understand distinct immune cell states, previously unidentified immune populations, and to interpret immune responses to vaccinations.

Details

ISSN :
10974172
Volume :
184
Issue :
13
Database :
OpenAIRE
Journal :
Cell
Accession number :
edsair.doi.dedup.....8e1010c15c3fa7a74c1d33798b21370c