Back to Search
Start Over
Confounding and Bias in the Attributable Fraction
- Source :
- Epidemiology. 22:53-58
- Publication Year :
- 2011
- Publisher :
- Ovid Technologies (Wolters Kluwer Health), 2011.
-
Abstract
- Inappropriate methods are frequently used to calculate the population attributable fraction (AF) for a given exposure of interest. This commonly occurs when authors use adjusted relative risks (RRs) reported in the literature (the "source" data), without access to the original data. In this analysis, we examine the relationship between the direction and magnitude of confounding in the source data and resulting bias in the attributable fraction when incorrect methods are used. We assess confounding by the confounding risk ratio, which is the ratio of the crude RR to the adjusted RR. We assess bias in the AF by the ratio of the incorrectly calculated AF to the correctly calculated AF. Using generated data, we examine the relationship between confounding and AF bias under various scenarios of population prevalence of exposure and strength of the exposure-disease association. For confounding risk ratios greater than 1.0 (ie, crude RR >adjusted RR), the AF is underestimated; for confounding risk ratios less than 1.0 (ie, crude RR
- Subjects :
- medicine.medical_specialty
education.field_of_study
Models, Statistical
Epidemiology
business.industry
Population
Confounding
Confounding Factors, Epidemiologic
Environmental Exposure
Environmental exposure
Total population
Risk Assessment
Original data
Bias
Population Surveillance
Relative risk
Attributable risk
medicine
Humans
education
business
Demography
Subjects
Details
- ISSN :
- 10443983
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Epidemiology
- Accession number :
- edsair.doi.dedup.....8e18beb7cf95374246225aeae9a7ce43
- Full Text :
- https://doi.org/10.1097/ede.0b013e3181fce49b