Back to Search Start Over

Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction

Authors :
Hermann Stuppner
Christian Gege
Stefan Martens
Silvia G. Inderbinen
Oliver Werz
Veronika Temml
Alex Odermatt
Fabian Mayr
Patricia Rodríguez Castaño
Daniela Schuster
Jana R. Fischer
Jerzy Adamski
Rolf W. Hartmann
Ulrike Garscha
Birgit Waltenberger
Amit V. Pandey
Gabriele Möller
Stefan Schwaiger
HIPS, Helmholtz-Institut für Pharmazeutische Forschung Saarland, Universitätscampus E8.1 66123 Saarbrücken, Germany.
Source :
Mayr, Fabian; Möller, Gabriele; Garscha, Ulrike; Fischer, Jana; Rodríguez Castaño, Patricia; Inderbinen, Silvia G.; Temml, Veronika; Waltenberger, Birgit; Schwaiger, Stefan; Hartmann, Rolf W.; Gege, Christian; Martens, Stefan; Odermatt, Alex; Pandey, Amit V.; Werz, Oliver; Adamski, Jerzy; Stuppner, Hermann; Schuster, Daniela (2020). Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. International journal of molecular sciences, 21(19), p. 7102. MDPI 10.3390/ijms21197102 , International journal of molecular sciences, Switzerland, International Journal of Molecular Sciences, Vol 21, Iss 7102, p 7102 (2020), International Journal of Molecular Sciences, Volume 21, Issue 19
Publication Year :
2020
Publisher :
MDPI, 2020.

Abstract

Natural products comprise a rich reservoir for innovative drug leads and are a constant source of bioactive compounds. To find pharmacological targets for new or already known natural products using modern computer-aided methods is a current endeavor in drug discovery. Nature&rsquo<br />s treasures, however, could be used more effectively. Yet, reliable pipelines for the large-scale target prediction of natural products are still rare. We developed an in silico workflow consisting of four independent, stand-alone target prediction tools and evaluated its performance on dihydrochalcones (DHCs)&mdash<br />a well-known class of natural products. Thereby, we revealed four previously unreported protein targets for DHCs, namely 5-lipoxygenase, cyclooxygenase-1, 17&beta<br />hydroxysteroid dehydrogenase 3, and aldo-keto reductase 1C3. Moreover, we provide a thorough strategy on how to perform computational target predictions and guidance on using the respective tools.

Details

Language :
English
Database :
OpenAIRE
Journal :
Mayr, Fabian; M&#246;ller, Gabriele; Garscha, Ulrike; Fischer, Jana; Rodr&#237;guez Casta&#241;o, Patricia; Inderbinen, Silvia G.; Temml, Veronika; Waltenberger, Birgit; Schwaiger, Stefan; Hartmann, Rolf W.; Gege, Christian; Martens, Stefan; Odermatt, Alex; Pandey, Amit V.; Werz, Oliver; Adamski, Jerzy; Stuppner, Hermann; Schuster, Daniela (2020). Finding New Molecular Targets of Familiar Natural Products Using In Silico Target Prediction. International journal of molecular sciences, 21(19), p. 7102. MDPI 10.3390/ijms21197102 <http://dx.doi.org/10.3390/ijms21197102>, International journal of molecular sciences, Switzerland, International Journal of Molecular Sciences, Vol 21, Iss 7102, p 7102 (2020), International Journal of Molecular Sciences, Volume 21, Issue 19
Accession number :
edsair.doi.dedup.....8e1bd274a5a9e50ff186a98d73a75cd6
Full Text :
https://doi.org/10.3390/ijms21197102