Back to Search Start Over

Chronos - take the pulse of our galactic neighbourhood. After Gaia: Time domain information, masses and ages for stars

Authors :
Sébastien Deheuvels
Kevin Belkacem
T. L. Campante
Jérôme Ballot
Victor Silva Aguirre
D. Katz
B. Mosser
Andy Moya
Margarida S. Cunha
Hans Kjeldsen
Misha Haywood
Juan Carlos Suárez
Benoit Famaey
Rafael A. García
Mário J. P. F. G. Monteiro
R. Samadi
Eric Michel
Andrea Miglio
Michel E.
Haywood M.
Famaey B.
Mosser B.
Samadi R.
Monteiro M.J.P.F.G.
Kjeldsen H.
Belkacem K.
Miglio A.
Garcia R.
Katz D.
Suarez J.C.
Deheuvels S.
Campante T.
Cunha M.
Aguirre V.S.
Ballot J.
Moya A.
Source :
Digibug. Repositorio Institucional de la Universidad de Granada, instname
Publication Year :
2021
Publisher :
Springer, 2021.

Abstract

Understanding our Galaxy’s structure, formation, and evolution will, over the next decades, continue to benefit from the wonderful large survey by Gaia, for astrometric, kinematic, and spectroscopic characterization, and by large spectroscopic surveys for chemical characterization. The weak link for full exploitation of these data is age characterization, and stellar age estimation relies predominantly on mass estimates. The ideas presented in this White Paper shows that a seismology survey is the way out of this situation and a natural complement to existing and planned surveys. These ideas are strongly rooted in the past decade’s experience of the so-called Seismology revolution, initiated with CoRoT and Kepler. The case of red giant stars is used here as the best current illustration of what we can expect from seismology for large samples, but premises for similar developments exist in various other classes of stars covering other ranges of age or mass. Whatever the star considered, the first information provided by stellar pulsations is always related to the mean density and thus to the mass (and age). In order to satisfy the need for long-duration and allsky coverage, we rely on a new instrumental concept which decouples integration time and sampling time. We thus propose a long (~1 year) all-sky survey which would perfectly fit between TESS, PLATO, and the Rubin Observatory (previously known as LSST) surveys to offer a time domain complement to the current and planned astrometric and spectroscopic surveys. The fine characterization of host stars is also a key aspect for the interpretation and exploitation of the various projects – anticipated in the framework of the Voyage 2050 programme – searching for atmospheric characterization of terrestrial planets or, more specifically, looking for a signature of life, in distant planets.

Details

Language :
English
Database :
OpenAIRE
Journal :
Digibug. Repositorio Institucional de la Universidad de Granada, instname
Accession number :
edsair.doi.dedup.....8e32e9ba0c57844b786323f828c3fb13