Back to Search Start Over

Identification of precancerous lesions by multispectral gastroendoscopy

Authors :
François Goudail
Jean-François Emile
Matthieu Boffety
Sergio Ernesto Martinez Herrera
Franck Marzani
Dominique Lamarque
Yannick Benezeth
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Laboratoire Electronique, Informatique et Image [UMR6306] (Le2i)
Université de Bourgogne (UB)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-Arts et Métiers Sciences et Technologies
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Centre National de la Recherche Scientifique (CNRS)
Laboratoire Charles Fabry / Spim
Laboratoire Charles Fabry (LCF)
Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)-Institut d'Optique Graduate School (IOGS)-Centre National de la Recherche Scientifique (CNRS)
Service d'anatomie pathologique [CHU Ambroise-Paré]
Assistance publique - Hôpitaux de Paris (AP-HP) (AP-HP)-Hôpital Ambroise Paré [AP-HP]
Biomarqueurs et essais cliniques en Cancérologie et Onco-Hématologie (BECCOH)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Université Paris-Saclay
Hôpital Ambroise Paré [AP-HP]
Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Arts et Métiers (ENSAM)
HESAM Université (HESAM)-HESAM Université (HESAM)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Universite de Versailles Saint Quentin en Yvelines
Laboratoire épidémiologie et oncogénèse des tumeurs digestives
Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ )
Laboratoire Electronique, Informatique et Image ( Le2i )
Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ) -AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement
Laboratoire Charles Fabry ( LCF )
Université Paris-Sud - Paris 11 ( UP11 ) -Institut d'Optique Graduate School ( IOGS ) -Centre National de la Recherche Scientifique ( CNRS ) -Université Paris-Sud - Paris 11 ( UP11 ) -Institut d'Optique Graduate School ( IOGS ) -Centre National de la Recherche Scientifique ( CNRS )
Service d'anatomie pathologique
Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Assistance publique - Hôpitaux de Paris (AP-HP)-Hôpital Ambroise Paré
Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ )
Hôpital Ambroise Paré
Université de Versailles Saint-Quentin-en-Yvelines ( UVSQ ) -Assistance publique - Hôpitaux de Paris (AP-HP)
Source :
Signal, Image and Video Processing, Signal, Image and Video Processing, Springer Verlag, 2016, 10 (3), pp.455-462. ⟨10.1007/s11760-015-0779-z⟩, Signal, Image and Video Processing, Springer Verlag, 2015, pp.1863-1711. 〈10.1007/s11760-015-0779-z〉
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Gastric cancer is one of the fifth most deadly cancers worldwide. Nowadays the diagnosis is performed through gastroendoscopy under white light and histological analysis. However, the precancerous lesions are multifocalized and present low differences with respect to healthy tissue. Several systems have been proposed based on light tissue interaction to improve the visualization of malignancies. However, these systems are limited to few wavelengths. In this paper, we propose a minimally invasive technique based on multispectral imaging and a methodology to identify malignancies in the stomach. We developed a multispectral gastroendoscopic system compatible with current gastroendoscopes, where only the illumination is changed. The spectra are extracted from the acquired multispectral images in order to compute statistical features that are used to classify the data in two classes: healthy and malignant. The features are ranked by pooled variance t test to train three classifiers. Neural networks using generalized relevance learning vector quantization, support vector machine (SVM) with a Gaussian kernel and k-nn are evaluated using leave one patient out cross-validation. Taking into consideration the data collected in this work, the quantitative results from the classification using SVM show high accuracy and sensitivity using a low number of features. These results show the ability to discriminate malignancies of the gastric tissue. Therefore, multispectral imaging could help in the identification of malignancies during gastroendoscopy.

Details

Language :
English
ISSN :
18631703 and 18631711
Database :
OpenAIRE
Journal :
Signal, Image and Video Processing, Signal, Image and Video Processing, Springer Verlag, 2016, 10 (3), pp.455-462. ⟨10.1007/s11760-015-0779-z⟩, Signal, Image and Video Processing, Springer Verlag, 2015, pp.1863-1711. 〈10.1007/s11760-015-0779-z〉
Accession number :
edsair.doi.dedup.....8e63f3776cf55bd0e30c78bb0a53f6dc
Full Text :
https://doi.org/10.1007/s11760-015-0779-z⟩