Back to Search
Start Over
Local geometric properties of the lightlike Killing magnetic curves in de Sitter 3-space
- Source :
- AIMS Mathematics, Vol 6, Iss 11, Pp 12543-12559 (2021)
- Publication Year :
- 2021
- Publisher :
- American Institute of Mathematical Sciences (AIMS), 2021.
-
Abstract
- In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve $ \mathit{\boldsymbol{\gamma }}(s) $ in $ \mathbb{S}^{3}_{1} $ with a magnetic field $ \boldsymbol{ V} $. Here, a new Frenet frame $ \{\mathit{\boldsymbol{\gamma }}, \boldsymbol{ T}, \boldsymbol{ N}, \boldsymbol{ B}\} $ is established, and we obtain the local structure of $ \mathit{\boldsymbol{\gamma }}(s) $. Moreover, the singular properties of the binormal lightlike surface of the $ \mathit{\boldsymbol{\gamma }}(s) $ are given. Finally, an example is used to understand the main results of the paper.
- Subjects :
- Physics
General Mathematics
Frenet–Serret formulas
de sitter 3-space
Space (mathematics)
Surface (topology)
Local structure
Magnetic field
De Sitter universe
lightlike killing magnetic curve
QA1-939
local structure
Gravitational singularity
binormal lightlike surface
singularities
Mathematics
Differential (mathematics)
Mathematical physics
Subjects
Details
- ISSN :
- 24736988
- Volume :
- 6
- Database :
- OpenAIRE
- Journal :
- AIMS Mathematics
- Accession number :
- edsair.doi.dedup.....8e741546072e2f3a918e866332667811
- Full Text :
- https://doi.org/10.3934/math.2021723