Back to Search Start Over

Local geometric properties of the lightlike Killing magnetic curves in de Sitter 3-space

Authors :
Jianguo Sun
Xiaoyan Jiang
Source :
AIMS Mathematics, Vol 6, Iss 11, Pp 12543-12559 (2021)
Publication Year :
2021
Publisher :
American Institute of Mathematical Sciences (AIMS), 2021.

Abstract

In this article, we mainly discuss the local differential geometrical properties of the lightlike Killing magnetic curve $ \mathit{\boldsymbol{\gamma }}(s) $ in $ \mathbb{S}^{3}_{1} $ with a magnetic field $ \boldsymbol{ V} $. Here, a new Frenet frame $ \{\mathit{\boldsymbol{\gamma }}, \boldsymbol{ T}, \boldsymbol{ N}, \boldsymbol{ B}\} $ is established, and we obtain the local structure of $ \mathit{\boldsymbol{\gamma }}(s) $. Moreover, the singular properties of the binormal lightlike surface of the $ \mathit{\boldsymbol{\gamma }}(s) $ are given. Finally, an example is used to understand the main results of the paper.

Details

ISSN :
24736988
Volume :
6
Database :
OpenAIRE
Journal :
AIMS Mathematics
Accession number :
edsair.doi.dedup.....8e741546072e2f3a918e866332667811
Full Text :
https://doi.org/10.3934/math.2021723