Back to Search Start Over

Complexity of planar signed graph homomorphisms to cycles

Authors :
Théo Pierron
François Dross
Valia Mitsou
Pascal Ochem
Florent Foucaud
University of Warsaw (UW)
Laboratoire d'Informatique, Signaux, et Systèmes de Sophia Antipolis (I3S)
Université Nice Sophia Antipolis (... - 2019) (UNS)
COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA)
Laboratoire Bordelais de Recherche en Informatique (LaBRI)
Université de Bordeaux (UB)-Centre National de la Recherche Scientifique (CNRS)-École Nationale Supérieure d'Électronique, Informatique et Radiocommunications de Bordeaux (ENSEIRB)
Laboratoire d'Informatique Fondamentale d'Orléans (LIFO)
Université d'Orléans (UO)-Institut National des Sciences Appliquées - Centre Val de Loire (INSA CVL)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)
Institut de Recherche en Informatique Fondamentale (IRIF (UMR_8243))
Centre National de la Recherche Scientifique (CNRS)-Université de Paris (UP)
Algorithmes, Graphes et Combinatoire (ALGCO)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Masaryk University [Brno] (MUNI)
Source :
Discrete Applied Mathematics, Discrete Applied Mathematics, Elsevier, 2020, 284, pp.166-178. ⟨10.1016/j.dam.2020.03.029⟩
Publication Year :
2020
Publisher :
Elsevier BV, 2020.

Abstract

We study homomorphism problems of signed graphs. A signed graph is an undirected graph where each edge is given a sign, positive or negative. An important concept for signed graphs is the operation of switching at a vertex, which is to change the sign of each incident edge. A homomorphism of a graph is a vertex-mapping that preserves the adjacencies; in the case of signed graphs, we also preserve the edge-signs. Special homomorphisms of signed graphs, called s-homomorphisms, have been studied. In an s-homomorphism, we allow, before the mapping, to perform any number of switchings on the source signed graph. This concept has been extensively studied, and a full complexity classification (polynomial or NP-complete) for s-homomorphism to a fixed target signed graph has recently been obtained. Such a dichotomy is not known when we restrict the input graph to be planar (not even for non-signed graph homomorphisms). We show that deciding whether a (non-signed) planar graph admits a homomorphism to the square $C_t^2$ of a cycle with $t\ge 6$, or to the circular clique $K_{4t/(2t-1)}$ with $t\ge2$, are NP-complete problems. We use these results to show that deciding whether a planar signed graph admits an s-homomorphism to an unbalanced even cycle is NP-complete. (A cycle is unbalanced if it has an odd number of negative edges). We deduce a complete complexity dichotomy for the planar s-homomorphism problem with any signed cycle as a target. We also study further restrictions involving the maximum degree and the girth of the input signed graph. We prove that planar s-homomorphism problems to signed cycles remain NP-complete even for inputs of maximum degree~$3$ (except for the case of unbalanced $4$-cycles, for which we show this for maximum degree~$4$). We also show that for a given integer $g$, the problem for signed bipartite planar inputs of girth $g$ is either trivial or NP-complete.<br />Comment: 17 pages, 10 figures

Details

ISSN :
0166218X
Volume :
284
Database :
OpenAIRE
Journal :
Discrete Applied Mathematics
Accession number :
edsair.doi.dedup.....8e99911ca4b2cd7cbe25dc70434cad9c