Back to Search Start Over

Black Hole Mass Measurements of Radio Galaxies NGC 315 and NGC 4261 Using ALMA CO Observations

Authors :
Jeremy Darling
David A. Buote
Andrew Baker
Jonathan Cohn
Jonelle L. Walsh
Benjamin D. Boizelle
Aaron J. Barth
Kyle M. Kabasares
Luis C. Ho
Publication Year :
2020
Publisher :
arXiv, 2020.

Abstract

We present Atacama Large Millimeter/submillimeter Array (ALMA) Cycle 5 and Cycle 6 observations of CO(2$-$1) and CO(3$-$2) emission at 0.2''$-$0.3'' resolution in two radio-bright, brightest group/cluster early-type galaxies, NGC 315 and NGC 4261. The data resolve CO emission that extends within their black hole (BH) spheres of influence ($r_\mathrm{g}$), tracing regular Keplerian rotation down to just tens of parsecs from the BHs. The projected molecular gas speeds in the highly inclined ($i>60^\circ$) disks rises at least 500 km s$^{-1}$ near their galaxy centers. We fit dynamical models of thin-disk rotation directly to the ALMA data cubes, and account for the extended stellar mass distributions by constructing galaxy surface brightness profiles corrected for a range of plausible dust extinction values. The best-fit models yield $(M_\mathrm{BH}/10^9\,M_\odot)=2.08\pm0.01(\mathrm{stat})^{+0.32}_{-0.14}(\mathrm{sys})$ for NGC 315 and $(M_\mathrm{BH}/10^9\,M_\odot)=1.67\pm0.10(\mathrm{stat})^{+0.39}_{-0.24}(\mathrm{sys})$ for NGC 4261, the latter of which is larger than previous estimates by a factor of $\sim$3. The BH masses are broadly consistent with the relations between BH masses and host galaxy properties. These are among the first ALMA observations to map dynamically cold gas kinematics well within the BH-dominated regions of radio galaxies, resolving the respective $r_\mathrm{g}$ by factors of $\sim$5$-$10. The observations demonstrate ALMA's ability to precisely measure BH masses in active galaxies, which will enable more confident probes of accretion physics for the most massive galaxies.<br />24 pages, 11 figures, 4 tables. Accepted for publication in ApJ

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....8eb9f364dcb8f1f4ae8a84dba9a25d2d
Full Text :
https://doi.org/10.48550/arxiv.2012.04669