Back to Search Start Over

Energy of sections of the Deligne–Hitchin twistor space

Authors :
Markus Roeser
Florian Beck
Sebastian Heller
Source :
Mathematische Annalen 380 (2021)
Publication Year :
2021
Publisher :
Heidelberg : Springer, 2021.

Abstract

We study a natural functional on the space of holomorphic sections of the Deligne-Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We give a link to a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. Moreover, we prove that for a certain class of real holomorphic sections of the Deligne-Hitchin moduli space, the functional is basically given by the Willmore energy of corresponding (equivariant) conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne-Hitchin moduli space from the space of twistor lines.<br />33 pages

Details

Language :
English
Database :
OpenAIRE
Journal :
Mathematische Annalen 380 (2021)
Accession number :
edsair.doi.dedup.....8f1373e01210043b449f99f42996dff7
Full Text :
https://doi.org/10.15488/10557