Back to Search
Start Over
Energy of sections of the Deligne–Hitchin twistor space
- Source :
- Mathematische Annalen 380 (2021)
- Publication Year :
- 2021
- Publisher :
- Heidelberg : Springer, 2021.
-
Abstract
- We study a natural functional on the space of holomorphic sections of the Deligne-Hitchin moduli space of a compact Riemann surface, generalizing the energy of equivariant harmonic maps corresponding to twistor lines. We give a link to a natural meromorphic connection on the hyperholomorphic line bundle recently constructed by Hitchin. Moreover, we prove that for a certain class of real holomorphic sections of the Deligne-Hitchin moduli space, the functional is basically given by the Willmore energy of corresponding (equivariant) conformal map to the 3-sphere. As an application we use the functional to distinguish new components of real holomorphic sections of the Deligne-Hitchin moduli space from the space of twistor lines.<br />33 pages
- Subjects :
- Mathematics - Differential Geometry
Pure mathematics
Twistor methods in differential geometry
General Mathematics
Holomorphic function
Computer Science::Digital Libraries
01 natural sciences
Twistor theory
Mathematics::Algebraic Geometry
Line bundle
0103 physical sciences
FOS: Mathematics
Compact Riemann surface
0101 mathematics
ddc:510
Relationships between algebraic curves and integrable systems
Mathematics::Symplectic Geometry
Hyper-Kähler and quaternionic Kähler geometry
Mathematics
Energy functional
Meromorphic function
Mathematics::Complex Variables
Vector bundles on curves and their moduli
010102 general mathematics
Differential geometric aspects of harmonic maps
Dewey Decimal Classification::500 | Naturwissenschaften::510 | Mathematik
Moduli space
Nonlinear Sciences::Exactly Solvable and Integrable Systems
Differential Geometry (math.DG)
Computer Science::Mathematical Software
Twistor space
010307 mathematical physics
Mathematics::Differential Geometry
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen 380 (2021)
- Accession number :
- edsair.doi.dedup.....8f1373e01210043b449f99f42996dff7
- Full Text :
- https://doi.org/10.15488/10557