Back to Search Start Over

How About Kind of Generating Hedges using End-to-End Neural Models?

Authors :
Abulimiti, Alafate
Clavel, Chloé
Cassell, Justine
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)
Apprentissage machine et développement cognitif (CoML)
Laboratoire de sciences cognitives et psycholinguistique (LSCP)
Département d'Etudes Cognitives - ENS Paris (DEC)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Département d'Etudes Cognitives - ENS Paris (DEC)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Laboratoire Traitement et Communication de l'Information (LTCI)
Institut Mines-Télécom [Paris] (IMT)-Télécom Paris
Télécom Paris
Institut Polytechnique de Paris (IP Paris)
Carnegie Mellon University [Pittsburgh] (CMU)
ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
Source :
61st Annual Meeting of the Association for Computational Linguistics, 61st Annual Meeting of the Association for Computational Linguistics, Jul 2023, Toronto, Canada
Publication Year :
2023

Abstract

International audience; Hedging is a strategy for softening the impact of a statement in conversation. In reducing the strength of an expression, it may help to avoid embarrassment (more technically, ``face threat'') to one's listener. For this reason, it is often found in contexts of instruction, such as tutoring. In this work, we develop a model of hedge generation based on i) fine-tuning state-of-the-art language models trained on human-human tutoring data, followed by ii) reranking to select the candidate that best matches the expected hedging strategy within a candidate pool using a hedge classifier. We apply this method to a natural peer-tutoring corpus containing a significant number of disfluencies, repetitions, and repairs. The results show that generation in this noisy environment is feasible with reranking. By conducting an error analysis for both approaches, we reveal the challenges faced by systems attempting to accomplish both social and task-oriented goals in conversation.

Details

Language :
English
Database :
OpenAIRE
Journal :
61st Annual Meeting of the Association for Computational Linguistics, 61st Annual Meeting of the Association for Computational Linguistics, Jul 2023, Toronto, Canada
Accession number :
edsair.doi.dedup.....8f34465d545d93ef553c033bcb52cb5b