Back to Search Start Over

From Euclidean to Riemannian Means: Information Geometry for SSVEP Classification

Authors :
Quentin Barthélemy
Eric Monacelli
Emmanuel K. Kalunga
Sylvain Chevallier
Yskandar Hamam
Karim Djouani
Laboratoire d'Ingénierie des Systèmes de Versailles (LISV)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)
Tshwane University of Technology [Pretoria] (TUT)
Mensia Technologies [Paris]
Source :
Geometric Science of Information, Geometric Science of Information, Oct 2015, Palaiseau, France. pp.595-604, ⟨10.1007/978-3-319-25040-3_64⟩, Lecture Notes in Computer Science ISBN: 9783319250397, GSI
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

International audience; Brain Computer Interfaces (BCI) based on electroencephalog-raphy (EEG) rely on multichannel brain signal processing. Most of the state-of-the-art approaches deal with covariance matrices , and indeed Riemannian geometry has provided a substantial framework for developing new algorithms. Most notably , a straightforward algorithm such as Minimum Distance to Mean yields competitive results when applied with a Riemannian distance. This applicative contribution aims at assessing the impact of several distances on real EEG dataset , as the invariances embedded in those distances have an influence on the classification accuracy . Euclidean and Riemannian distances and means are compared both in term of quality of results and of computational load .

Details

Language :
English
ISBN :
978-3-319-25039-7
ISBNs :
9783319250397
Database :
OpenAIRE
Journal :
Geometric Science of Information, Geometric Science of Information, Oct 2015, Palaiseau, France. pp.595-604, ⟨10.1007/978-3-319-25040-3_64⟩, Lecture Notes in Computer Science ISBN: 9783319250397, GSI
Accession number :
edsair.doi.dedup.....8f3a5cdb41c45b0c6e8b6fccbd935c1e
Full Text :
https://doi.org/10.1007/978-3-319-25040-3_64⟩