Back to Search
Start Over
Uncovering a novel molecular mechanism for scavenging sialic acids in bacteria
- Source :
- The Journal of Biological Chemistry, Digital.CSIC. Repositorio Institucional del CSIC, instname, idUS. Depósito de Investigación de la Universidad de Sevilla, idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US)
- Publication Year :
- 2020
-
Abstract
- The human gut symbiont Ruminococcus gnavus scavenges host-derived N-acetylneuraminic acid (Neu5Ac) from mucins by converting it to 2,7-anhydro-Neu5Ac. We previously showed that 2,7-anhydro-Neu5Ac is transported into R. gnavus ATCC 29149 before being converted back to Neu5Ac for further metabolic processing. However, the molecular mechanism leading to the conversion of 2,7-anhydro-Neu5Ac to Neu5Ac remained elusive. Using 1D and 2D NMR, we elucidated the multistep enzymatic mechanism of the oxidoreductase (RgNanOx) that leads to the reversible conversion of 2,7-anhydro-Neu5Ac to Neu5Ac through formation of a 4-keto-2-deoxy-2,3-dehydro-N-acetylneuraminic acid intermediate and NAD+ regeneration. The crystal structure of RgNanOx in complex with the NAD+ cofactor showed a protein dimer with a Rossman fold. Guided by the RgNanOx structure, we identified catalytic residues by site-directed mutagenesis. Bioinformatics analyses revealed the presence of RgNanOx homologues across Gram-negative and Gram-positive bacterial species and co-occurrence with sialic acid transporters. We showed by electrospray ionization spray MS that the Escherichia coli homologue YjhC displayed activity against 2,7-anhydro-Neu5Ac and that E. coli could catabolize 2,7-anhydro-Neu5Ac. Differential scanning fluorimetry analyses confirmed the binding of YjhC to the substrates 2,7-anhydro-Neu5Ac and Neu5Ac, as well as to co-factors NAD and NADH. Finally, using E. coli mutants and complementation growth assays, we demonstrated that 2,7-anhydro-Neu5Ac catabolism in E. coli depended on YjhC and on the predicted sialic acid transporter YjhB. These results revealed the molecular mechanisms of 2,7-anhydro-Neu5Ac catabolism across bacterial species and a novel sialic acid transport and catabolism pathway in E. coli.
- Subjects :
- 0301 basic medicine
sialic acid transporters
nuclear magnetic resonance (NMR)
gut symbiosis
Escherichia coli (E. coli)
medicine.disease_cause
2,7-anhydro-Neu5AC
Biochemistry
Cofactor
03 medical and health sciences
chemistry.chemical_compound
Bacterial Proteins
Oxidoreductase
Ruminococcus gnavus
medicine
Escherichia coli
Humans
Molecular Biology
oxidoreductase
chemistry.chemical_classification
Clostridiales
mucin glycosylation
030102 biochemistry & molecular biology
biology
gut microbiota
Catabolism
Genetic Complementation Test
microbiology
Mucins
Cell Biology
Sialic acid transport
2,7-anhydro-Neu5Ac
N-Acetylneuraminic Acid
symbiosis
Sialic acid
STD NMR
030104 developmental biology
chemistry
sialic acid
biology.protein
Enzymology
NAD+ kinase
Oxidoreductases
oxidation-reduction (redox)
Subjects
Details
- Language :
- English
- ISSN :
- 1083351X
- Database :
- OpenAIRE
- Journal :
- The Journal of Biological Chemistry, Digital.CSIC. Repositorio Institucional del CSIC, instname, idUS. Depósito de Investigación de la Universidad de Sevilla, idUS: Depósito de Investigación de la Universidad de Sevilla, Universidad de Sevilla (US)
- Accession number :
- edsair.doi.dedup.....901941fcabacdf65a9c1fff57705d5ac