Back to Search Start Over

Cryogenic role of central endogenous hydrogen sulfide in the rat model of endotoxic shock

Authors :
Rodrigo Alberto Restrepo Fernández
Renato N. Soriano
Terezila Machado Coimbra
João Paulo J. Sabino
Luiz G.S. Branco
Heloísa Della Coletta Francescato
Source :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2016

Abstract

Thermoregulatory responses to lipopolysaccharide (LPS) are affected by modulators that increase (propyretic) or decrease (cryogenic) body temperature (Tb). We tested the hypothesis that central hydrogen sulfide (H2S) acts as a thermoregulatory modulator and that H2S production in the anteroventral preoptic region of the hypothalamus (AVPO) is increased during hypothermia and decreased during fever induced by bacterial lipopolysaccharide (LPS, 2.5 mg/kg i.p.) in rats kept at an ambient temperature of 25 °C. Deep Tb was recorded before and after pharmacological inhibition of the enzyme cystathionine β-synthase (CBS – responsible for H2S endogenous production in the brain) combined or not with LPS administration. To further investigate the mechanisms responsible for these thermoregulatory adjustments, we also measured prostaglandin D2 (PGD2) production in the AVPO. LPS caused typical hypothermia followed by fever. Levels of AVPO H2S were significantly increased during hypothermia when compared to both euthermic and febrile rats. Intracerebroventricular (icv) microinjection of aminooxyacetate (AOA, a CBS inhibitor; 100 pmol) neither affected Tb nor basal PGD2 production during euthermia. In LPS-treated rats, AOA caused increased Tb values during hypothermia, along with enhanced PGD2 production. We conclude that the gaseous messenger H2S modulates hypothermia during endotoxic shock, acting as a cryogenic molecule.

Details

Database :
OpenAIRE
Journal :
Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....90533d6e5772cc2a7abf2640504b8d29