Back to Search Start Over

Xylella fastidiosacauses transcriptional shifts that precede tylose formation and starch depletion in xylem

Authors :
Dario Cantu
Yuling Sun
Andrew J. McElrone
Mélanie Massonnet
M. Caroline Roper
Clarissa Reyes
Brian Ingel
Qiang Sun
Bailey Boudreau
Source :
Molecular plant pathology, vol 22, iss 2, Molecular Plant Pathology
Publication Year :
2020
Publisher :
Wiley, 2020.

Abstract

Pierce's disease (PD) in grapevine (Vitis vinifera) is caused by the bacterial pathogen Xylella fastidiosa. X. fastidiosa is limited to the xylem tissue and following infection induces extensive plant‐derived xylem blockages, primarily in the form of tyloses. Tylose‐mediated vessel occlusions are a hallmark of PD, particularly in susceptible V. vinifera. We temporally monitored tylose development over the course of the disease to link symptom severity to the level of tylose occlusion and the presence/absence of the bacterial pathogen at fine‐scale resolution. The majority of vessels containing tyloses were devoid of bacterial cells, indicating that direct, localized perception of X. fastidiosa was not a primary cause of tylose formation. In addition, we used X‐ray computed microtomography and machine‐learning to determine that X. fastidiosa induces significant starch depletion in xylem ray parenchyma cells. This suggests that a signalling mechanism emanating from the vessels colonized by bacteria enables a systemic response to X. fastidiosa infection. To understand the transcriptional changes underlying these phenotypes, we integrated global transcriptomics into the phenotypes we tracked over the disease spectrum. Differential gene expression analysis revealed that considerable transcriptomic reprogramming occurred during early PD before symptom appearance. Specifically, we determined that many genes associated with tylose formation (ethylene signalling and cell wall biogenesis) and drought stress were up‐regulated during both Phase I and Phase II of PD. On the contrary, several genes related to photosynthesis and carbon fixation were down‐regulated during both phases. These responses correlate with significant starch depletion observed in ray cells and tylose synthesis in vessels.<br />During Pierce's disease, Xylella fastidiosa triggers transcriptional changes in Vitis vinifera grapevines and induces major physiological responses, including tylose formation and starch depletion.

Details

ISSN :
13643703 and 14646722
Volume :
22
Database :
OpenAIRE
Journal :
Molecular Plant Pathology
Accession number :
edsair.doi.dedup.....90a8bb7aa67320c1b21529e20e3955ea
Full Text :
https://doi.org/10.1111/mpp.13016