Back to Search Start Over

Use of Machine Learning for gamma/hadron separation with HAWC

Authors :
Tomás Capistrán
Kwok Lung Fan
James T. Linnemann
Ibrahim Torres
Pablo Miguel Saz Parkinson
Philip L. H. Yu
Anushka Udara Abeysekara
Andrea Albert
Ruben Alfaro
César Alvarez
Juan de Dios Álvarez Romero
José Roberto Angeles Camacho
Juan Carlos Arteaga Velazquez
Arun Babu Kollamparambil
Daniel Omar Avila Rojas
Hugo Alberto Ayala Solares
Rishi Babu
Vardan Baghmanyan
Ahron S. Barber
Josefa Becerra Gonzalez
Ernesto Belmont-Moreno
Segev BenZvi
David Berley
Chad Brisbois
Karen S. Caballero Mora
Alberto Carramiñana
Sabrina Casanova
Oscar Chaparro-Amaro
Umberto Cotti
Jorge Cotzomi
Sara Coutiño de León
Eduardo de la Fuente
Cederik León de León
Lorenzo Diaz
Raquel Diaz Hernandez
Juan Carlos Díaz Vélez
Brenda Dingus
Mora Durocher
Michael DuVernois
Robert Ellsworth
Kristi Engel
María Catalina Espinoza Hernández
Ke Fang
Mateo Fernandez Alonso
Brian Fick
Henrike Fleischhack
Jorge Luis Flores
Nissim Illich Fraija
Diego Garcia Aguilar
Jose Andres Garcia-Gonzalez
Jose Luis García-Luna
Guillermo García-Torales
Fernando Garfias
Gwenael Giacinti
Hazal Goksu
Maria Magdalena González
Jordan A. Goodman
J. Patrick Harding
Sergio Hernández Cadena
Ian Herzog
Jim Hinton
Binita Hona
Dezhi Huang
Filiberto Hueyotl-Zahuantitla
Michelle Hui
Brian Humensky
Petra Hüntemeyer
Arturo Iriarte
Armelle Jardin-Blicq
Hannah Jhee
Vikas Joshi
David Kieda
Gerd J. Kunde
Samridha Kunwar
Alejandro Lara
Jason LEE
William H. Lee
Dirk Lennarz
Hermes Leon Vargas
Anna Lia Longinotti
Ruben Lopez-Coto
Gilgamesh Luis-Raya
Joe Lundeen
Kelly Malone
Vincent Marandon
Oscar M Martinez
Israel Martinez Castellanos
Humberto Martínez Huerta
Jesús Martínez-Castro
John Matthews
Julie McEnery
Pedro Miranda-Romagnoli
Jorge Antonio Morales Soto
Eduardo Moreno Barbosa
Miguel Mostafa
Amid Nayerhoda
Lukas Nellen
Michael Newbold
Mehr Un Nisa
Roberto Noriega-Papaqui
Laura Olivera-Nieto
Nicola Omodei
Alison Peisker
Yunior Pérez Araujo
Eucario Gonzalo Pérez Pérez
Chang Dong Rho
Colas Rivière
Daniel Rosa-Gonzalez
Edna Ruiz-Velasco
James Ryan
Humberto Ibarguen Salazar
Francisco Salesa Greus
Andrés Sandoval
Michael Schneider
Harm Schoorlemmer
José Serna-Franco
Gus Sinnis
Andrew James Smith
Wayne Robert Springer
Pooja Surajbali
Ignacio Taboada
Meghan Tanner
Kirsten Tollefson
Ramiro Torres Escobedo
Rhiannon M. Turner
Fernando Josue Urena Mena
Luis Villaseñor
Xiaojie Wang
Ian James Watson
Thomas Weisgarber
Felix Werner
Elijah Job Willox
Joshua Wood
Gaurang Yodh
Arnulfo Zepeda
Hao Zhou
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

Background showers triggered by hadrons represent over 99.9% of all particles arriving at ground-based gamma-ray observatories. An important stage in the data analysis of these observatories, therefore, is the removal of hadron-triggered showers. Currently, the High-Altitude Water Cherenkov (HAWC) gamma-ray observatory employs an algorithm based on a single cut in two variables, unlike other ground-based gamma-ray observatories (e.g. H.E.S.S., VERITAS), which employ a large number of variables to separate the primary particles. In this work, we explore machine learning techniques (Boosted Decision Trees and Neural Networks) to identify the primary particles detected by HAWC. Our new gamma/hadron separation techniques were tested on data from the Crab nebula, the standard reference in Very High Energy astronomy, showing an improvement compared to the standard HAWC background rejection method.<br />Comment: Presented at the 37th International Cosmic Ray Conference (ICRC2021), Berlin, Germany - Online

Details

Database :
OpenAIRE
Accession number :
edsair.doi.dedup.....90afe2be081cad2a40a173496940c852
Full Text :
https://doi.org/10.48550/arxiv.2108.00112