Back to Search Start Over

Symplectomorphisms of exotic discs

Authors :
Ivan Smith
Sylvain Courte
Ailsa Keating
Roger Casals
Keating, Ailsa [0000-0002-1288-3117]
Apollo - University of Cambridge Repository
Instituto de Ciencias Matematicas CSIC-UAM-UC3M-UCM, Consejo Superior de Investigaciones Cientficas
Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Institut Fourier (IF )
Université Grenoble Alpes [2016-2019] (UGA [2016-2019])-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Consejo Superior de Investigaciones Científicas [Spain] (CSIC)
Institut Fourier (IF)
Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Source :
Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, École polytechnique, 2018, 5, pp.289-316. ⟨10.5802/jep.71⟩
Publication Year :
2018
Publisher :
Cellule MathDoc/CEDRAM, 2018.

Abstract

We construct a symplectic structure on a disc that admits a compactly supported symplectomorphism which is not smoothly isotopic to the identity. The symplectic structure has an overtwisted concave end; the construction of the symplectomorphism is based on a unitary version of the Milnor--Munkres pairing. En route, we introduce a symplectic analogue of the Gromoll filtration. The Appendix by S. Courte shows that for our symplectic structure the map from compactly supported symplectic mapping classes to compactly supported smooth mapping classes is in fact surjective.

Details

ISSN :
24297100 and 2270518X
Database :
OpenAIRE
Journal :
Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, École polytechnique, 2018, 5, pp.289-316. ⟨10.5802/jep.71⟩
Accession number :
edsair.doi.dedup.....90da22e819db38d36125808afa85db8a
Full Text :
https://doi.org/10.17863/cam.24069