Back to Search
Start Over
Symplectomorphisms of exotic discs
- Source :
- Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, École polytechnique, 2018, 5, pp.289-316. ⟨10.5802/jep.71⟩
- Publication Year :
- 2018
- Publisher :
- Cellule MathDoc/CEDRAM, 2018.
-
Abstract
- We construct a symplectic structure on a disc that admits a compactly supported symplectomorphism which is not smoothly isotopic to the identity. The symplectic structure has an overtwisted concave end; the construction of the symplectomorphism is based on a unitary version of the Milnor--Munkres pairing. En route, we introduce a symplectic analogue of the Gromoll filtration. The Appendix by S. Courte shows that for our symplectic structure the map from compactly supported symplectic mapping classes to compactly supported smooth mapping classes is in fact surjective.
- Subjects :
- Engineering
ComputingMilieux_THECOMPUTINGPROFESSION
business.industry
General Mathematics
010102 general mathematics
Foundation (engineering)
Astrophysics::Instrumentation and Methods for Astrophysics
Library science
01 natural sciences
Computer Science::Digital Libraries
[MATH.MATH-SG]Mathematics [math]/Symplectic Geometry [math.SG]
0103 physical sciences
ComputingMethodologies_DOCUMENTANDTEXTPROCESSING
010307 mathematical physics
0101 mathematics
business
GeneralLiterature_REFERENCE(e.g.,dictionaries,encyclopedias,glossaries)
Mathematics::Symplectic Geometry
ComputingMilieux_MISCELLANEOUS
Subjects
Details
- ISSN :
- 24297100 and 2270518X
- Database :
- OpenAIRE
- Journal :
- Journal de l'École polytechnique — Mathématiques, Journal de l'École polytechnique — Mathématiques, École polytechnique, 2018, 5, pp.289-316. ⟨10.5802/jep.71⟩
- Accession number :
- edsair.doi.dedup.....90da22e819db38d36125808afa85db8a
- Full Text :
- https://doi.org/10.17863/cam.24069