Back to Search Start Over

Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors

Authors :
Michel Rawiso
Nicolas Giuseppone
Quan Li
Emilie Moulin
Igor M. Kulić
Gad Fuks
Justin T. Foy
Mounir Maaloum
Moulin, Emilie
Institut Charles Sadron (ICS)
Université de Strasbourg (UNISTRA)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Matériaux et Nanosciences Grand-Est (MNGE)
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Réseau nanophotonique et optique
Université de Strasbourg (UNISTRA)-Université de Haute-Alsace (UHA) Mulhouse - Colmar (Université de Haute-Alsace (UHA))-Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)-Centre National de la Recherche Scientifique (CNRS)
Source :
Nature Nanotechnology, Nature Nanotechnology, 2015, 10 (2), pp.161-165. ⟨10.1038/nnano.2014.315⟩
Publication Year :
2015
Publisher :
HAL CCSD, 2015.

Abstract

Making molecular machines that can be useful in the macroscopic world is a challenging long-term goal of nanoscience. Inspired by the protein machinery found in biological systems, and based on the theoretical understanding of the physics of motion at the nanoscale, organic chemists have developed a number of molecules that can produce work by contraction or rotation when triggered by various external chemical or physical stimuli. In particular, basic molecular switches that commute between at least two thermodynamic minima and more advanced molecular motors that behave as dissipative units working far from equilibrium when fuelled with external energy have been reported. However, despite recent progress, the ultimate challenge of coordinating individual molecular motors in a continuous mechanical process that can have a measurable effect at the macroscale has remained elusive. Here, we show that by integrating light-driven unidirectional molecular rotors as reticulating units in a polymer gel, it is possible to amplify their individual motions to achieve macroscopic contraction of the material. Our system uses the incoming light to operate under far-from-equilibrium conditions, and the work produced by the motor in the photostationary state is used to twist the entangled polymer chains up to the collapse of the gel. Our design could be a starting point to integrate nanomotors in metastable materials to store energy and eventually to convert it.

Details

Language :
English
ISSN :
17483387 and 17483395
Database :
OpenAIRE
Journal :
Nature Nanotechnology, Nature Nanotechnology, 2015, 10 (2), pp.161-165. ⟨10.1038/nnano.2014.315⟩
Accession number :
edsair.doi.dedup.....90e2954f1d92244cff4a21984e48fed5
Full Text :
https://doi.org/10.1038/nnano.2014.315⟩