Back to Search Start Over

A comparison of FPGA and GPGPU designs for Bayesian occupancy filters

Authors :
Luis Medina
Miguel Diez-Ochoa
Raúl Correal
Antonio Martínez-Álvarez
Jorge Godoy
Sergio Cuenca-Asensi
Alejandro Serrano
Jorge Villagra
Ministerio de Economía y Competitividad (España)
Universidad de Alicante. Departamento de Tecnología Informática y Computación
Universidad de Alicante. Instituto Universitario de Investigación Informática
UniCAD: Grupo de investigación en CAD/CAM/CAE de la Universidad de Alicante
Source :
Sensors, Vol 17, Iss 11, p 2599 (2017), Sensors; Volume 17; Issue 11; Pages: 2599, RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA), Sensors (Basel, Switzerland), Sensors, ISSN 1424-8220, 2017-11, Vol. 17, No. 11, Archivo Digital UPM, instname, Digital.CSIC. Repositorio Institucional del CSIC
Publication Year :
2017
Publisher :
Molecular Diversity Preservation International, 2017.

Abstract

Grid-based perception techniques in the automotive sector based on fusing information from different sensors and their robust perceptions of the environment are proliferating in the industry. However, one of the main drawbacks of these techniques is the traditionally prohibitive, high computing performance that is required for embedded automotive systems. In this work, the capabilities of new computing architectures that embed these algorithms are assessed in a real car. The paper compares two ad hoc optimized designs of the Bayesian Occupancy Filter; one for General Purpose Graphics Processing Unit (GPGPU) and the other for Field-Programmable Gate Array (FPGA). The resulting implementations are compared in terms of development effort, accuracy and performance, using datasets from a realistic simulator and from a real automated vehicle.<br />This work has been partially funded by the Spanish Ministry of Economy and Competitiveness with the National Projects TCAP-AUTO (RTC-2015-3942-4) and NAVEGASE (DPI2014-53525-C3-1-R).

Details

Database :
OpenAIRE
Journal :
Sensors, Vol 17, Iss 11, p 2599 (2017), Sensors; Volume 17; Issue 11; Pages: 2599, RUA. Repositorio Institucional de la Universidad de Alicante, Universidad de Alicante (UA), Sensors (Basel, Switzerland), Sensors, ISSN 1424-8220, 2017-11, Vol. 17, No. 11, Archivo Digital UPM, instname, Digital.CSIC. Repositorio Institucional del CSIC
Accession number :
edsair.doi.dedup.....90f20aafa0406527201f79bf51c9685c