Back to Search Start Over

Degree-anonymization using edge rotations

Authors :
Cristina Bazgan
Pierre Cazals
Janka Chlebíková
Université Paris Dauphine-PSL
Université Paris sciences et lettres (PSL)
Laboratoire d'analyse et modélisation de systèmes pour l'aide à la décision (LAMSADE)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)
Source :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2021, 873, pp.1-15. ⟨10.1016/j.tcs.2021.04.020⟩
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

The Min Anonymous-Edge-Rotation problem asks for an input graph G and a positive integer k to find a minimum number of edge rotations that transform G into a graph such that for each vertex there are at least k − 1 other vertices of the same degree (a k-degree-anonymous graph). In this paper, we prove that the Min Anonymous-Edge-Rotation problem is NP-hard even for k = n / q , where n is the order of a graph and q any positive integer, q ≥ 3 . We argue that under some constrains on the number of edges in a graph and k, Min Anonymous-Edge-Rotation is polynomial-time 2-approximable. Furthermore, we show that the problem is solvable in polynomial time for any graph when k = n and for trees when k = θ ( n ) . Additionally, we establish sufficient conditions for an input graph and k such that a solution for Min Anonymous-Edge-Rotation exists.

Details

Language :
English
ISSN :
18792294 and 03043975
Database :
OpenAIRE
Journal :
Theoretical Computer Science, Theoretical Computer Science, Elsevier, 2021, 873, pp.1-15. ⟨10.1016/j.tcs.2021.04.020⟩
Accession number :
edsair.doi.dedup.....91211a4031f71f20f1047a031cf6cb1e
Full Text :
https://doi.org/10.1016/j.tcs.2021.04.020⟩