Back to Search Start Over

An Extensive Experimental Study on the Cluster-based Reference Set Reduction for Speeding-up the k-NN Classifier

Authors :
Ougiaroglou, Stefanos
Evangelidis, Georgios
Dervos, Dimitris A.
2nd AMICUS Workshop
Mednet Hellas, The Greek Medical Network
National And Kapodistrian University of Athens
University of Peloponnese
Technological educational Institute of Athens
Emerald Group Publishing Limited
Source :
1rd International Conference on Integrated Information
Publication Year :
2011

Abstract

The k-Nearest Neighbor (k-NN) classification algorithm is one of the most widely-used lazy classifiers because of its simplicity and ease of implementation. It is considered to be an effective classifier and has many applications. However, its major drawback is that when sequential search is used to find the neighbors, it involves high computational cost. Speeding-up k-NN search is still an active research field. Hwang and Cho have recently proposed an adaptive cluster-based method for fast Nearest Neighbor searching. The effectiveness of this method is based on the adjustment of three parameters. However, the authors evaluated their method by setting specific parameter values and using only one dataset. In this paper, an extensive experimental study of this method is presented. The results, which are based on five real life datasets, illustrate that if the parameters of the method are carefully defined, one can achieve even better classification performance.<br />Proceeding of International Conference on Integrated Information (IC-InInfo 2011), pp. 12-15, Kos island, Greece, 2011

Details

Language :
English
Database :
OpenAIRE
Journal :
1rd International Conference on Integrated Information
Accession number :
edsair.doi.dedup.....916b9f3877f3650e017d7244ae299539